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Table of acronyms & glossary 
 
The acronyms and terms used throughout this document are clarified below. 
 
Table 1 – Table of acronyms 

Acronym Full form 

ANM Active Network Management 

AOI Area of Interest 

API Application Programming Interface 

ASC Authorised Supply Capacity 

BAU Business As Usual 

CP Charge Point 

CSMS Charge Station Management System 

DC Direct Current 

DNO Distribution Network Operator 

DSO Distribution System Operator 

EPN Eastern Power Networks plc 

EV Electric Vehicle 

FSP Full Submission Pro-forma (in reference to the project proposal) 

FU Flexible Unit 

GB Great Britain 

hm Hectometre (100 metres) 

HV High Voltage 

ICE(V) Internal Combustion Engine (Vehicle) 

IT Information Technology 

kW Kilowatt 

kWh Kilowatt hour 

LAD Local Authority District 

LPN London Power Networks plc 

LSOA Lower Layer Super Output Area 

LV Low Voltage 

MWh Megawatt hour 

MSOA Middle Layer Super Output Area 

NIC Network Innovation Competition 

OTA Over-the-Air 

PH(V) Private Hire (Vehicle) 

PTU Programme Time Unit 

RAG Red-Amber-Green 

RFID Radio-Frequency Identification 

SoC State of Charge 

SPN South Eastern Power Networks plc 

SSEN Scottish & Southern Electricity Networks 

TCO Total Cost of Ownership 

TfL Transport for London 

UUID Universally Unique Identifier 

UK United Kingdom 

VIN Vehicle Identification Number 

W(h) Watt (hour) 

WS Workstream 
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Table 2 – Glossary of terms 

Term Definition 

Un-managed charging Charging of an EV at the rate set by the connection until it 
reaches full charge or is disconnected. 

Smart charging  Charging via a smart charger equipped with two-way 
communication, enabling charging habits to be adaptive. 

Flexibility The ability to respond dynamically to a signal provided by the 
DNO to increase or decrease the power exchanged with the 
network, compared to an initial planned behaviour. In Optimise 
Prime there are three flexibility products: Product A – Firm 
Forward Option; Product B – Spot Market; Product C – 
Balancing Market. 
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Executive summary 
 
Optimise Prime is a third-party industry-led electric vehicle (EV) innovation and demonstration 
project that brings together partners from leading technology, energy, transport and financing 
organisations, including Hitachi Vantara, UK Power Networks, Centrica, Royal Mail, Uber, 
Scottish & Southern Electricity Networks, Hitachi Europe and Hitachi Capital Vehicle 
Solutions.  
 
The project is gathering data from over 3,000 EVs driven for commercial purposes through 
three trials. Optimise Prime will also implement a range of technical and commercial solutions 
with the aim of accelerating the transition to electric vehicles for commercial fleet operators, 
while helping GB’s distribution networks plan and prepare for the mass adoption of EVs.  
 
Through cross-industry collaboration and co-creation, the project aims to reduce the impact of 
EVs on distribution networks and ensure security of electricity supply while saving money for 
electricity customers, helping the UK meet its clean air and climate change objectives. The 
project consists of three trials – WS1, investigating the impact of commercial vehicles charging 
at Homes, WS2, monitoring and optimising commercial vehicles charging in depots and WS3, 
which uses private hire vehicle (PHV) journey data to model the impact of these vehicles on 
the distribution network. The trial period for WS3 began in August 2020, with WS1 and WS2 
trials commencing on 1 July 2021. All trials are due to conclude in June 2022. 
 
Optimise Prime’s outcomes will include: 

• Insight into the impact of the increasing number of commercial EVs being charged at 
domestic properties, and commercial solutions for managing home based charging 

• A site planning tool and analysis of optimisation methodologies enabling an easier 
and more cost-effective transition to EVs for depot-based fleets 

• A methodology for implementing profiled connections for EVs, implemented in 
coordination with network planning and active network management tools 

• Learnings regarding how useful and commercially attractive flexibility services from 
commercial EVs can be to DNOs, and how such services could be implemented 

• A significant dataset and accompanying analysis on the charging behaviour of 
commercial vehicles 

 
This report forms the fourth Optimise Prime deliverable, D4, providing an interim overview of 
lessons learnt from conducting the trials, summarising the data collected, insights gained and 
required changes that have been identified during the pre-trial period and in the first months 
of trial activity. Over this time the project has collected and analysed data from a wide range 
of sources in order to carry out a wide range of experiments. These experiments will allow the 
project to test the efficacy of the Optimise Prime methods and model the potential impact of 
EV growth on distribution networks.  
 
Some of the key insights and challenges, which are discussed in more detail throughout this 
report, include: 
 
WS1 – Return-to-Home Trials 

• Unmanaged, the peak charging demand from return-to-home vehicles is likely to 
occur between 17:00 and 19:00, coinciding with peak demand on the distribution 
network. 
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• Smart charging has been modelled to significantly reduce peak demand from return-
to-home vehicles. However, the benefits of simply shifting load later are much less 
than of balancing load over a longer period. 

• Within the return-to-home trial there is expected to be a significant seasonal variation 
in power demand, based on analysis of ICEV data. Future work will look at 
differentiating between seasonal variations between differences in British Gas 
workload and other factors. 

• The majority of British Gas fleet journeys should be able to be fulfilled with the current 
generation of EV Vans. On-route charging could be used for occasional longer trips. 

 
WS2 – Depot Trials 

• Modelling has created predictions of charging demand in unmanaged and smart 
scenarios. These models demonstrate that smart charging should deliver reduction 
of peak demand for the networks as well as energy and connection cost savings for 
the depot operator. 

• Initial trials and modelling of profiled connections have shown that it should be 
possible to utilise control of EV charging to keep sites within an agreed profile. 
However there may be some sites where there is too little controllable EV demand to 
do this reliably. 

• Flexibility trials have shown an ability to control charging in response to flexibility 
requests from the Distribution Network Operator (DNO). With the forward option 
product a significant difference between forecast (month ahead) and actual demand 
has been encountered, so future trials will look at improving the reliability of 
forecasting. 

• The reliability of using RFID (radio frequency identification) tags to accurately identify 
the vehicles that can be controlled continues to be an issue and can limit the 
availability of controllable load at depots. The project is looking at how this could be 
resolved through process changes. 

 
WS3 – Mixed Trials 

• The data from Uber trips has allowed the trials to model charging events and demand 
throughout Greater London. Charge demand from PHVs is likely to peak in the 
evening as some drivers return home and others need to top up. 

• There is a clear pattern within and across days in trip and charging demand. Impact 
of weather on trip patterns appears to be limited. 

• There is a significant number of locations where drivers need to travel far if they need 
to charge during their shift. These are most frequently found in the Central London 
borough of Westminster and the City of London, where there is limited availability of 
rapid chargers. 

• Based on modelling the optimal CP for each charge event, the most popular CPs in 
London are utilised way beyond their capacity, suggesting drivers will have to queue 
in order to charge when they are at their busiest, or travel further in order to use non-
optimal CPs. 

• Current distribution network capacity varies across London, and there is likely to be 
capacity for sufficient growth in infrastructure in Central London. There may be more 
constraint in outer areas where drivers live, although slower chargers could be 
considered here. 
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• Throughout the project there has been continual growth in both Charge Point (CP) 
infrastructure and the average range of vehicles in the WS3 trial. Both of these factors 
will need to be factored in to modelling of future charging patterns. 

 
Section 1 introduces this report and provides a brief overview of the project, the trials and the 
solutions that have been developed to support the Optimise Prime trials. Section 2 details 
activities and findings from the return-to-home trials (WS1) carried out with Centrica’s British 
Gas fleet. Section 3 presents details of the interim findings from the WS2 depot trials in 
progress at Royal Mail depots in the London area. Section 4 presents findings from the mixed 
trials (WS3), where data from Uber trips in Greater London is being analysed in order to 
achieve insights into the current and future impact of the PHV sector on charging and network 
infrastructure.  
 
In all three trials the document revisits the experiments, gives an overview of the data that has 
been collected, presents interim conclusions and outlines next steps and changes planned 
based on experience from the first months of the trials. Section 5 summarises the conclusions 
of the report, based on the work completed to date, and details the next steps in the trials that 
will be documented in deliverables D5 and D7. The appendices in Section 6 present further 
details on the results of experiments conducted so far.  
 
The development of the Optimise Prime solutions is now complete, although some further 
work to improve processes based on project learnings is likely to continue as the trials 
progress. The project partners had introduced sufficient EVs to their fleets to produce a 
statistically significant data set in advance of the start of the trials. Since then the EV fleet 
involved in the trials has continued to grow and there are in excess of 3,500 EVs involved in 
the trials. 
 
The project is dedicated to creating solutions and data that will be applicable to all GB DNOs 
and this report provides the first evidence of the applicability of the methods being trialled in 
Optimise Prime. In addition, a significant amount of analysis has taken place both before and 
during the trial period in order to determine the potential impact of commercial EVs on 
distribution networks. These findings should prove valuable to any DNO considering how to 
plan for the future growth of commercial EVs. In addition, vehicle fleet operators planning to 
implement EV infrastructure and supporting IT systems can learn from the results presented 
herein and use the project’s findings to optimise their EV transition. Although some aspects of 
the trial design are specific to Optimise Prime and its partners, the principles and objectives 
are applicable to all DNOs and to vehicle fleets planning a transition to ultra-low emission 
vehicles. 
 
Table 3 shows the requirements of Deliverable D4, set out in the Project Direction, and where 
each item can be found within this report.  
 
Table 3 – Deliverable D4 Requirements 

 
Deliverable D4: Early learning report on the trials 

Evidence item Relevant section of the report 

Report setting out: 

how each trial is 

performing 

Details can be found in sections 2.3, 3.3 and 4.3, relating to WS1, 

2 and 3 respectively. 

data gathered Details can be found in sections 2.5, 3.5 and 4.5, relating to WS1, 

2 and 3 respectively. 
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Deliverable D4: Early learning report on the trials 

insights gained Details can be found in sections 2.7, 3.7 and 4.7, relating to WS1, 

2 and 3 respectively. 

changes required Details can be found in sections 2.9, 3.9 and 4.9, relating to WS1, 

2 and 3 respectively. 

 
Optimise Prime is committed to sharing the project’s outcomes as widely as possible. The 
project will continue to engage with a wide group of stakeholders throughout the fleet, PHV, 
technology and energy industries through a programme of events, reports, and the project 
website www.optimise-prime.com.  
  

http://www.optimise-prime.com/
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1 Background & purpose 
 
This report, the fourth deliverable of the Network Innovation Competition (NIC) funded 
Optimise Prime project, details the early learnings from the three Optimise Prime trials. It 
demonstrates the work that has gone ahead in order to meet the trial objectives that were set 
out in Deliverable D1. 
 

1.1 Introduction to Optimise Prime 
Optimise Prime is an industry led EV innovation and demonstration project that brings together 
partners from leading technology, energy, transport and financing organisations, including 
Hitachi Vantara, UK Power Networks, Centrica, Royal Mail, Uber, Scottish & Southern 
Electricity Networks, Hitachi Europe and Hitachi Capital Vehicle Solutions. The role of each 
partner is described in Table 4. 
 
Table 4 – Project Partners 

 

Partner Description Project Role 

 Hitachi is a leading global 
technology group 
committed to bringing 
about social innovation. 
Three Hitachi companies 
are project partners. 
Hitachi Vantara, Hitachi 
Europe, and Hitachi 
Capital Vehicle Solutions. 

Hitachi leads the project, 
providing overall project 
management, energy and fleet 
expertise and project IT 
platforms. Hitachi is also 
developing tools for the depot 
trial. 

 Electricity DNO covering 
three licenced distribution 
networks in South East 
England, the East of 
England and London. The 
three networks cover an 
area of 30,000 square 
kilometres and over eight 
million customers. 

London Power Networks 
(LPN) is the project’s funding 
licensee. UK Power Networks 
provides networks expertise 
and is developing new 
connections methodologies 
and flexibility products. 

 The electricity DNO 
covering the north of the 
Central Belt of Scotland 
and Central Southern 
England.  

Supporting experiments within 
the Central Southern England 
region, ensuring wider 
applicability of methods. 

 Royal Mail provides postal 
delivery and courier 
services throughout the 
UK. It manages the 
largest vehicle fleet in the 
UK with over 48,000 
vehicles based at 1,700 
delivery offices. 

Royal Mail is electrifying 
depots and operates EVs. 
Project tools will be tested in 
the depots and data from the 
vehicles will be captured. 

https://www.optimise-prime.com/s/OP_Deliverables_D1_ver11.pdf
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Partner Description Project Role 

 Uber is the fastest 
growing PHV operator in 
the UK. Over 70,000 
partner-drivers use the 
app in the UK, with the 
majority in and around 
London. 

Uber is providing journey 
details from EV PHVs 
operating in London for the 
mixed trial. 

 

 
Centrica is a UK based 
international energy and 
services company that 
supplies electricity, gas 
and related services to 
businesses and 
consumers. 

The British Gas commercial 
vehicle fleet will participate in 
the trial. Centrica will also 
provide charging and 
aggregation solutions for the 
home trial. 

 
Data from the use of over 3,500 EVs driven for commercial purposes is being gathered and 
analysed. The EVs are primarily based in London and the South East of England, although 
some in the home trial (WS1) are located throughout the UK. Optimise Prime is implementing 
a range of technical and commercial solutions with the aim of accelerating the transition to 
electric for commercial fleet operators while helping GB’s distribution networks plan and 
prepare for the mass adoption of EVs. Through cross-industry collaboration and co-creation, 
the project is aiming to ensure security of energy supply while saving money for electricity 
customers, helping the UK meet its clean air and climate change objectives and transition to 
a net zero carbon economy. 
 
Optimise Prime aims to be the first of its kind, paving the way to the development of cost-
effective strategies to minimise the impact of commercial EVs on the distribution network. 
Commercial EVs are defined as vehicles used for business purposes, including the transport 
of passengers and goods. Compared to vehicles used for domestic purposes, commercial 
EVs will have a much greater impact on the electricity network because of their higher 
mileages and therefore higher electricity demand. The additional impact of commercial depot 
based EVs results from two factors: co-location of multiple EVs at a single depot location, and 
higher energy demand per vehicle resulting from higher daily mileages and payloads. The 
latter is also a factor when commercial EVs are charged at domestic locations.  
 
Two DNO groups (UK Power Networks and Scottish & Southern Electricity Networks) across 
four licence areas are involved in the project. The consortium includes two of the largest UK 
commercial fleets (Royal Mail and British Gas) and a major PHV operator (Uber). This scale 
allows the industry to test different approaches to reducing the impact of vehicle electrification 
on distribution networks, in advance of mass adoption throughout the 2020s. This will also 
help understand the impact of a wide range of variables, including different network 
constraints, typical mileage, traffic characteristics, location (urban, sub-urban, rural) and 
availability of public “top-up” charging on the feasibility of electrification of commercial vehicle 
fleets. 
 
By studying this diversity, the learnings generated by the project will be applicable to the whole 
of GB. Optimise Prime will deliver invaluable insights by using data-driven forecasting tools 
designed to allow networks to proactively plan upgrades. In addition, this project will create a 
detailed understanding of the amount of flexibility that commercial EVs can provide to the 
network through smart charging. Finally, a site planning tool has been developed to allow 
customers to model the impact of fleet electrification on their connection requirements. The 
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tool will show customers how smart charging could be used to charge their vehicles within 
existing connection limits, and where this is not possible will provide the information necessary 
to request profiled connections (a new type of connection, providing a consumption connection 
capacity limit that varies throughout the day) from the DNO. Taken together, these form a set 
of innovative capabilities that allow for optimised utilisation of the network capacity, adopting 
a “flexibility first” approach and only reinforcing the network where no flexible alternative is 
suitable. This will result in cheaper costs for all customers, those connecting EV charge points, 
and all electricity bill payers. 
 
Optimise Prime is seeking to answer three core questions, set in the project’s Full Submission 
Pro-Forma (FSP), relating to the electrification of commercial fleets and PHVs: 
 
1. How do we quantify and minimise the network impact of commercial EVs? 
We will gain a comprehensive and quantified understanding of the demand that commercial 
EVs will place on the network, and the variation between fleet and vehicle types. We will 
achieve this through large-scale field trials where we will capture and analyse significant 
volumes of vehicle telematics and network data. This data will enable the creation and 
validation of practical models that can be used to better exploit existing network capacity, 
optimise investment and enable the electrification of fleets as quickly and cheaply as possible.  
 
2. What is the value proposition for smart solutions for EV fleets and PHV 

operators? 
We will gain an understanding of the opportunities that exist to reduce the load on the network 
through the better use of data, planning tools and smart charging. Additionally, we will consider 
and trial the business models that are necessary to enable these opportunities. We will 
achieve this by developing technical and market solutions, and then using them in field trials 
to gather robust evidence and assess their effectiveness. 
 
3. What infrastructure (network, charging and IT) is needed to enable the EV 

transition? 
We will understand how best to optimise the utilisation of infrastructure to reduce the load on 
the network. This will be achieved through the collection, analysis and modelling of depot-
based, return-to-home fleet and PHV journey data.  
 
Answering these questions will enable network operators to quantify savings which can be 
achieved through reinforcement deferral and avoidance while facilitating the transition to low 
carbon transport. The trial will also assess the journey data to understand the charging and 
associated IT infrastructure requirements and implications for depot and fleet managers to be 
able to operate a commercial EV fleet successfully. 
 

1.2 Purpose and structure of this report 
The purpose of this report is to share the early learnings from the Optimise Prime trials. This 
includes all work done to date in analysing the data arising from the vehicles and infrastructure 
involved in the Home (WS1), Depot (WS2) and Mixed (WS3) use cases. This deliverable is 
an interim report, aimed at presenting initial findings from early analysis that may be of interest 
to project stakeholders. Throughout the remainder of the trials the project will compile a much 
richer dataset, allowing the results of all of the trial experiments to be reported in future 
deliverables. 
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1.3 Infrastructure, technology solution and trials context 
The main elements of the infrastructure and technology solution are set out in the Full 
Submission Pro-forma (FSP) and are designed to support the three trials and two project 
methods (table 6 below). The trials align with the fleets of Optimise Prime’s three project 
partners, each of which charge, representing home, depot and mixed charging as shown in 
Table 5. 
 
Table 5 – Optimise Prime trials 
 

Trial 
Number 

Name Partner  Description 

1 Home 
Charging  

Maintenance1 

A field study of charging behaviour and flexibility 
with a return to home fleet. 

2 Depot 
Charging  

Delivery 

A field study of charging behaviour and flexibility 
with a depot-based fleet. Additionally, the 
testing of profiled connections. 

3 Mixed 
Charging 

 
PHV operator 

A study based on analysis of journey data from 
electric PHVs.  

 
Two methods will be tested through the trials. They are summarised in Table 6 below. 
 
Table 6 – Optimise Prime methods 
 

Method 1 

Smart demand 
response for 
commercial EVs 
on domestic 
connections 

Currently the additional peak demand would trigger reactive network 
reinforcement with the costs being entirely socialised as domestic and 
non-domestic use is blended together.  

 

In Optimise Prime we aim to separate the commercial loads to make 
them visible, testing demand response approaches with commercial 
EVs charging at domestic premises to identify and quantify the 
available charging flexibility. 

Method 2 

Depot energy 
optimisation and 
planning tools 
for profiled 
connections 

Currently depots request a connection based on ‘worst case’ 
estimated peak demand, often triggering network reinforcement. The 
cost is part paid for by the connecting customer and part socialised 
across connected customers. 

 

In Optimise Prime we aim to design and test smart charging and 
energy optimisation ‘behind the meter’, at depots, to be able to 
conform to an agreed profiled connection. We are developing the tools 
and processes to calculate the optimal connection profile and 
infrastructure, for each site, to minimise the connection cost and/or 
capacity used. We will also test demand response approaches to 
identify and quantify the available charging flexibility from an optimal 
profile. The project will develop the commercial arrangements to 
enable the rollout of the method following the project. 

 

 
1 British Gas is a subsidiary of project partner Centrica. 
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 Trials Overview 
The Optimise Prime trials are being conducted using a common framework that was 
introduced in Deliverable D1 and further developed into a series of experiments in Deliverable 
D2. In brief, each of the trials is broken down into a series of objectives, listed in Table 7, 
based on the project’s core questions, the table shows which of the objectives is relevant to 
each trial. The objectives are in turn broken down into sub-objectives, and experiments, as 
shown in Figure 1. The experiments can be carried out using data analysis, and completing 
the experiments will fulfil the objectives. 
 
Table 7 – Objectives of the Optimise Prime trials 

 

 
  

 
2 Additional to the agreed FSP scope, but will be included if Uber are able to provide summaries of 
driver and/or passenger ratings in comparison with ICE vehicle data without additional cost to the project 

Objective  Home Depot Mixed 

1. Create and validate 
models that predict the 
effects of electrification 
of commercial vehicles 
on the network to enable 
optimal investment 

 X X X 

2. Assess the effects of 
profiled connections on 
fleet EV transition 

 
X 

 

3. Assess smart 
electrification strategies 

X X 
 

4. Assess the ability of 
EV fleets to provide 
flexibility services to the 
DNO 

X X X 

5. Evaluate operational 
limitations to 
commercial fleet 
electrification 

X X 2 

https://www.optimise-prime.com/s/OP_Deliverables_D1_ver11.pdf
https://www.optimise-prime.com/s/OP_Deliverables_D2_Ver_11.pdf
https://www.optimise-prime.com/s/OP_Deliverables_D2_Ver_11.pdf
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Figure 1 – Trials objective deconstruction 

 

 
 
The experiments have been designed to be iterative and were planned to all be run multiple 
times during the preliminary implementation phase (providing the necessary systems and data 
were in place), allowing for lessons to be learned from the first runs and applied to the 
execution approach before the formal trials began. Learnings from these preliminary activities 
are presented in this report, together with the initial results from the formal stage of the trials, 
where it has become possible to fully test aspects of the project methods such as profiled 
connections and flexibility services. As the trials progress and the project team’s 
understanding of the data develops the experiments may be revised and the data analysis 
approach refined in order to fulfil the objectives more effectively and deliver additional insights. 
 
Each execution is associated with the set of data engineering and data analysis features that 
are required to deliver it. For each trial, a specific set of data science models and analysis 
approaches is being developed according to the data science methodology, enabling insights 
and conclusions to be drawn from the data. 
 
The iterations of experiments are designed to create a sample size sufficient to ensure 
statistical robustness in drawing conclusions from the analysis. This is being confirmed as the 
datasets are developed and trials carried out, with reference to the statistical approach that 
has been developed for the trials. 
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2 WS1 – Interim learnings from the Home Trials 

2.1 Overview of the WS1 trials 
WS1 is the home charging trial, focused on studying the charging behaviour and flexibility 
provision of a fleet where commercial EVs return to drivers’ homes to charge. The trial is 
collecting data from the vehicles and chargers and testing the provision of flexibility services 
through the optimisation of vehicle charging by an aggregator, which will be analysed to model 
impact on the distribution network. In Optimise Prime, the trial involves Centrica’s British Gas 
maintenance fleet of electric light commercial vehicles.  
 

2.2 The WS1 Experiments 
WS1 trials involve the execution of 14 experiments, listed in Table 8. Activities supporting the 
initial experiments have already been carried out, and are detailed throughout this section of 
the report, while others will follow later in the trial period, or will be reported in more detail in 
the next deliverable, D5, which focuses on initial learnings from business models and 
behavioural factors. 
 
Some small changes have been made to the experiment hypotheses based on the project’s 
growing understanding of EV operations and are noted in the table below. 
 
Table 8 – WS1 Experiments 

 

Experiment number Hypothesis Status 

CEN_Ex_01 The relative contribution of 
unmanaged charging of charge-at-
home EVs to overall home 
electricity consumption can be 
predicted using analysis of ICEV 
operation 

Explored in this report 

CEN_Ex_02 The relative contribution of 'smart' 
charging of charge-at-home EVs to 
overall home electricity 
consumption can be predicted 
using analysis of ICEV operation 
and unmanaged EV charging 
behaviour 

Explored in this report 

CEN_Ex_03 EV charging demand will be 
influenced by weather and 
seasonal events 

Explored in this report 

CEN_Ex_04 Charge-at-home EV charging 
causes low magnitude, local 
constraint on the LV distribution 
network but poses a more 
significant effect at higher voltages 
due to network clustering 

To be explored in deliverable 
D7 

CEN_Ex_05 Charge-at-home commercial 
vehicle electrification has higher 
DNO cost implications than depot-
based vehicle electrification 

To be explored in deliverable 
D7 



Early Learning Report on the Trials 

 

 
 
Optimise Prime  Page 17 of 101 
 
 

Experiment number Hypothesis Status 

CEN_Ex_06 Originally: Separate metering of 
commercial EV charging will save 
money for both the driver and the 
fleet operator3  
Updated: In the absence of an 
industry solution to the separation 
of commercial load on a domestic 
connection, software solutions 
based on data from CPs and 
telematics can provide an effective 
alternative, saving money for the 
driver and fleet operator 

To be explored in deliverable 
D5 

CEN_Ex_07 The Total Cost of Ownership (TCO) 
of charge-at-home EVs will be 
higher than ICEVs due to higher 
upfront costs 

To be explored in deliverable 
D5 

CEN_Ex_08 Distribution network constraints 
caused by charge-at-home 
commercial EVs will be minimised 
through combination of smart-
charging and time of use (ToU) 
tariffs 

Explored in this report 

CEN_Ex_09 Originally: Charge-at-home 
vehicles with reactive operational 
behaviour with large 
distances/heavy loads are 
inappropriate for electrification4 
Updated: Reliance on home-based 
charging only is not suitable for 
vehicles with reactive operational 
behaviour, travelling large 
distances or carrying heavy loads 

Explored in this report 

CEN_Ex_10 The availability for charge-at-home 
EVs to be utilised for flexibility 
services can be predicted from 
'smart' and unmanaged charging 
experiments 

To be explored in deliverable 
D7 

CEN_Ex_11 Flexibility from charge-at-home EVs 
will be best suited to long-term 
weekend contracts or short-term 
over-night contracts 

To be explored in deliverable 
D7 

 
3 The change to CEN_Ex_06 clarifies that WS1 is using a solution to measure and reimburse EV 
charging costs rather than splitting metering, as the proposed Balancing and Settlement Code 
modification that would have allowed this (P379) has been withdrawn. 
4 CEN_Ex_09 has been reworded to clarify the meaning of this hypothesis. 
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Experiment number Hypothesis Status 

CEN_Ex_12 Originally: Centrica drivers will 
prioritise operability over 
technological complexity of 
solution5  
Updated:  
12a) Drivers’ opinions of EVs and 
related smart technologies will 
become more positive with an 
increased exposure/experience.    
 
12b) External factors rather than 
organisational factors are seen as 
main barriers to EV transition by 
corporate management.   
 
12c) Smart charging needs to offer 
clear benefit to both the drivers and 
the fleet operator in order to be 
accepted.   

To be explored in deliverable 
D5 

CEN_Ex_13 Centrica as a fleet operator will 
prioritise TCO minimisation above 
operational aspects 

To be explored in deliverable 
D5 

CEN_Ex_14 Charge-at-home commercial EV 
fleets are not attractive to 
aggregators for flexibility provision 

To be explored in deliverable 
D5 

 

2.3 Status of the WS1 trials 
WS1 have progressed significantly and trials began in full on 1 July 2021, once the minimum 
number of vehicles required to provide statistical significance, based on analysis by Imperial 
College Consultants (300), was on the road, and the systems were in place to record vehicle 
and charging activity. Since then, vehicle numbers have increased and there are now over 
650 British Gas EVs on the road in the UK, with this number expected to increase to 1,000 as 
the trials progress. British Gas has adopted the Vauxhall e-Vivaro throughout their fleet, and 
these EVs are located throughout the UK, as shown in Figure 2. 
 
The setting up of the WS1 trials presented more of a challenge to the project than the other 
trials, as its timeline was impacted by the slower than anticipated entry to the market of suitable 
EVs offering the required range and payload at an acceptable price. In turn this has had an 
effect on the development timeline of related project systems, as it was not seen as a good 
use of project resources to invest in development, and not possible to test solutions, before 
the EVs were confirmed.  
 
There are lessons to be learnt for other projects, and more generally for fleet managers, with 
regards to the uncertainties when planning the implementation of new technologies, and the 
need to allow sufficient flexibility to account for the increased likelihood of unexpected delays. 
While there are significantly more electric LCV models on the market now, compared to when 
the project began, supply remains a limiting factor on the ability of businesses to electrify their 
fleets. The complexity of rolling out EVs to a large fleet should also not be underestimated, as 

 
5 CEN_Ex_12 has been expanded into three hypotheses, reflecting the differing roles of the driver and 
fleet operator in transitioning fleets to EV. 
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it is necessary to coordinate the availability and fit-out of the vans with the availability of drivers 
and installation of CPs at homes. CPs were generally installed in advance of need, however 
in some instances drivers initially charged using public infrastructure where this was not 
possible.  
 
Despite this, prior to the trials pre-trial executions of certain experiments were carried out 
which allowed the project team to create models and baselines through the analysis of British 
Gas’ existing ICEV fleet, adding EVs to the analysis as they entered the fleet. Doing this 
allowed the project to refine plans for the trials and the outcomes of this initial analysis forms 
the core part of the learnings presented in this document. 
 
Figure 2 – Location of British Gas EVs, by local authority in England and Wales 

 

 
 
As more EVs join the trials there is an ongoing process of reconciliation between the telematics 
received from the vehicles and the charging events registered by the home charge points. In 
this type of analysis it is especially important to ensure that journeys and charging events are 
correctly linked in the analysis. Some inconsistencies were found in the two datasets that had 
to be resolved, so careful monitoring of the data sets proved necessary. 
 
The flexibility functionality required for WS1 has also taken longer to develop than originally 
anticipated. This was partially a knock-on effect of the delay to vehicle deliveries, as it was 
difficult to fully design and test systems in advance of vehicles being available. These delays 
also caused some resource constraints within the project partners. The flexibility functionality 
is reliant on UK Power Networks’ Active Network Management (ANM) system, which is being 
developed as a business-as-usual system outside of the scope of the project. 
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Interdependence on the development of new and complex systems such as this creates 
benefits in terms of showing the methods can work with Business as Usual (BAU) systems 
but does add risk to the project that needs to be appropriately managed. When it became 
apparent that the development timeline for the main ANM system would be extended the 
project switched to utilising a cloud-based version of the ANM system – this mitigated some 
of the delay, as did testing the integration of the different systems involved. While the project 
will collect a full year of telematics and charging data, the trialling of some flexibility products 
is being re-planned to ensure that all necessary experiments are carried out in the shorter 
period available. 
 
The pre-trial and trial periods fell within a time when there may have been disruption to 
activities caused by the COVID-19 pandemic and the related restrictions in the UK. During the 
first lockdown in March-May 2020, British Gas engineers focused on mainly emergency 
callouts rather than routine maintenance, which may have impacted vehicle use, however 
subsequently schedules have returned to normal and there will have been little impact on the 
trial period. 
 
In addition to technical trials of the project methods and the analysis of data from vehicles the 
project has also carried out behavioural surveys with drivers of return to home vehicles. The 
interim results of the behavioural analysis will be reported in deliverable D5. 
 

2.4 Methodology 
The core data science analysis activities for this workstream principally utilises the EV 
telematics and CP data received as a monthly batch from Centrica. This covers all charging 
modes (unmanaged, smart and flexibility) anticipated in the Trials Design, and includes: 

• Analysing the charging behaviour of a home-based fleet based on telematics and 
charging data 

• Comparing the behaviour of EVs against ICEVs to model future network impacts 

• Use of Local Authority Districts (LADs), and Middle Layer Super Output Area (MSOAs) 
to group vehicles, considering geographic factors such as regional variations in 
demand and clustering 

• Analysis of the ability of home-based fleets to provide reliable flexibility services to the 
Distribution System Operator (DSO) in order to manage network constraints 

 
Figure 3 – Map of the MSOAs in the AOI, coloured by DNO area 
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The initial Area of Interest (AOI) which will be the focus of the study covers the regions served 
by UK Power Networks’ three DNO regions and SSEN’s Southern region, shown in Figure 3. 
British Gas EVs throughout the rest of the UK will be included in future analysis where a larger 
data set is needed. 
 
The approach for delivering the WS1 trials has been adapted since the trial design was 
originally agreed. While it was originally anticipated that the smart charging profiles and bids 
for flexibility would be developed on the project’s main data platform, this work will instead be 
done by Centrica, utilising their expertise in, and systems developed for aggregation of 
distributed loads. This is not expected to have a material impact on learnings and should 
ensure that the flexibility responses generated in the project can be replicated with 
commercially available flexibility providers. As described above, Centrica will provide raw 
charging data to Hitachi for analysis and meter data from flexibility events to UK Power 
Networks to calculate performance and settlement. 
 

2.5 Data being gathered to support the WS1 trials 
The WS1 trials utilise a number of different datasets in order to analyse the charging 
behaviour of EVs. In these interim results, the focus has been on working with data from the 
existing ICEV fleet, as well as the initial analysis of EV data. The trials team has analysed 
historical ICEV data from August 2018 to February 2021 from around 7,000 ICEVs and is 
continuing to capture data from ~3,500 ICEVs in 160 LADs and more than 4,000 MSOAs. 
Events have been observed in 3,015 unique MSOAs across the AOI, this is shown in 

Figure 5 later in this chapter.  
 
The data for the WS1 trials comes from two main sources – telematics (data captured from 
the vehicle) and meter data (captured from the CP used to charge the vehicle battery at the 
engineer’s home).  

 Vehicle Telematics 
Telematics from British Gas’ EVs are compiled by the telematics provider and sent to Hitachi 
in a monthly batch for analysis. A similar historic dataset is collected for ICEVs to compare 
use of EVs with ICEVs and predict the impact of future growth. The specific data fields 
collected is described in Table 9.  
 
Table 9 – Summary of telematics data fields 

 

Data Collected for each trip 

Device identifier 

Trip start date, time, latitude, longitude, postcode 

Trip end date, time, latitude, longitude, postcode 

Trip distance in miles 

 CP meter data 
There are two uses for CP meter data within Optimise Prime. It is used by Centrica to monitor 
their charge points to: 

• Determine the amount of electricity the engineer should be reimbursed for charging 
their vehicle from their home for business purposes 

• Enable smart charging schedules to be enacted (in this use case Centrica will delay 
charging to an off-peak time, but will not impose limits on charging rate), and to provide 
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evidence following flexibility events. Monthly batches of data are also shared with 
Hitachi for analysis.  

There are two datasets of CP data:   

• Per transaction dataset, a raw extract of events from Centrica’s Charge Station 
Management System (CSMS), described in Table 10; and  

• Flexibility settlement dataset, the data submitted by Centrica to the DNOs for the 
purpose of bids and settlements, described in Table 11. 
 

Table 10 – Centrica CP metering data fields 

 

Data Collected for each charge session 

Charger and transaction ID 

Start timestamp of transaction 

End timestamp of transaction 

Duration of charging event in minutes 

Total kWh of charging event 

 
Table 11 – Centrica flexibility CP data 

 

Data Collected for each flexibility event 

Flexibility UUID (Universally Unique Identifier) 

Forward schedule (kW per half hour) 

Planned deviation (kW per half hour) 

Actual observed power, 15-minute average (kW) 

Actual observed power, minute by minute (kW) 

 
In addition to these main data sources, the WS1 trials are also able to make use of a number 
of common datasets used throughout the trials, such as geographical boundaries, which are 
used to group and display locations. Substation load and weather data are also available to 
the trial and will be used in future experiments in order to investigate impacts of home charging 
on the distribution network and the impact of weather on charging demand. 
 

2.6 Analysis 
 
A number of executions of the experiments in the Home charging trial have been carried out 
with the datasets available to date. This primarily involved analysis of telematics data from the 
existing ICEV fleet, plus a smaller number of EVs.  This section summarises the activities that 
have taken place so far as part of the analysis. 

 Formalising the AOI 
The initial analysis focused on the core area of interest as shown in Figure 3. To extend the 
number of vehicles providing data into the trials, the AOI will be extended to GB as a whole 
for subsequent experiment runs. The AOI area is split down into smaller statistical areas, LADs 
and MSOAs, which are used for analysis of the location of vehicles and charging events. 
 
This AOI was then divided into three groups, corresponding to “urban”, “suburban” or “rural” 
areas, using an algorithm that allocated MSOAs to one of these groups according to their size. 
As each MSOA has a roughly constant population (between 5,000 and 15,000 with a mean 
population of 7,200 based on the 2011 census), the area of the MSOA indicates population 
density. Smaller MSOAs have dense populations and were therefore classified as “urban”, 
while larger MSOAs have a more dispersed population. MSOAs were equally distributed 
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across three quantiles of the area distribution, representing the three density types (urban, 
suburban, rural) (Figure 4). There are 1,005 MSOAs in each category.  
 
Figure 4 – Segmentation model for locations into the three location profiles: urban, suburban 
and rural 

 

 
 

A Driver Home location model was developed to discern the dispersion of start/end events for 
the British Gas ICEV drivers, the same model can be applied to EVs. The model took the 
median of all the end locations for each driver over events where the haversine distance 
between the start and end location, essentially the distance “as the crow flies”, was less than 
one mile.  
 
At the time of this initial analysis it was found that there were a total of 3,113 vehicles operating, 
with 3,002 of these being ICEVs and the remaining 111 EVs. The LADs with the most ICEVs 
were Dartford (195), Bromley (88) and Hillingdon (83), with nearby Hounslow containing the 
largest number of EVs (8). This distribution is shown in Figure 5. 
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Figure 5 – Plot of British Gas ICEV driver home locations (LAD), coloured by number of drivers. 

 

 
 

 Driver home location segmentation 
Having observed the apportionment of drivers across the AOI, the trials used the same model 
to investigate the dispersion of drivers according to the characteristics of the MSOA they were 
assigned to: if it was “rural”, “suburban” or “urban”. As shown in Figure 6, it was found that 
both “rural” and “suburban” home locations for British Gas drivers were more common than 
“urban” MSOAs.   
 
The trials then analysed these location segments according to the fuel type of the drivers’ 
vehicles (Figure 7). Rural locations were the dominant home for EV drivers accounting for 
44% of the total, whereas for ICEV drivers there was a close split between suburban and rural. 
British Gas have confirmed that they allocated EVs based on interest shown by individual 
drivers, and did not target specific locations or routes, however the larger number of rural 
applicants may have been driven by the ease of installing charging infrastructure. 
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Figure 6 – Driver home location segmentations 

 

 
 
 
 
Figure 7 – Driver home location segmentations according to fuel type of vehicle. The Pie Chart 
on the left displays the results for EV drivers, and the right displays for ICEV drivers 

 

 
 
When the project analysed home location by number of charge events reported in the model, 
based on historical use of ICE vehicles, there were increases in charge events across all three 
home location types during the winter months of both 2019 and 2020. This is related to the 
seasonal nature of British Gas’ work, such as servicing/repairing heating systems, where 
callouts are more common in cold weather. This could suggest that there was increased 
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demand for electricity during this period which is important for consideration in further analysis 
on potential DNO impact and analysis of the charging load over the winter period of the trial.  

 Driver schedules 
Early analysis, shown in Figure 8, indicated a general trend of British Gas drivers starting their 
shift at 9am and ending between 4:30-5pm. This appeared to be consistent across the different 
locational segments and there was little divergence when start and end times were analysed 
according to the DNO area in which the driver operated. 
 
Figure 8 – Daily start and end times for ICEV schedules 

 

 
The trials analysed the daily distances driven by each ICEV, as shown in Figure 9. The 
average distance that drivers were travelling was approximately 45 miles per day, with more 
distance covered by drivers during autumn and winter.  

 
Figure 9 – Daily distances travelled by British Gas drivers, excluding any trips below one mile 
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 Trip profiles 
To gain a deeper understanding of British Gas’ drivers’ operations, four trip profiles were 
established and modelled against the previous findings on trip schedules and lengths. The 
profiles were:  

• Standard (Planned): A trip profile would be denoted as Standard if the start time was 
between approximately 06:30 and 13:00 and end time was between approximately 
13:00 to 20:00. 

• Reactive: A trip profile would be Reactive if the schedule of activity did not constitute 
a Standard trip profile. Generally drivers with these profiles are ‘on call’ and can 
respond to customers at any time. 

• Long Day: a trip profile would be a Long Day if the difference between the start time 
and the end time of a shift was at least 18 hours. This length of time was variable.   

• Outlier: A trip profile would be an Outlier if the difference between the first start time 
and the last start time was less than 15 minutes, or the daily distance was less than 
one mile. The specific length of time and distance was variable. 

 
The trials then applied these rules within the model to find the most common trip types that 
British Gas drivers were operating. Standard trip profiles made up the majority of operations 
at 60%, with Reactive profiles 18%, Long Day trips 12%, and Outlier trips the final 10% (Figure 
10).  
 
The outcome of this analysis was discussed with British Gas, who confirmed that it was 
generally in line with their operational patterns, and that they expect ‘Reactive’ and ‘Long Day’ 
routines, to increase in the winter when there is increased demand for repairs in addition to 
scheduled servicing. British Gas suggested that the longer days in Winter may not always 
result in longer mileages, as the increased demand often results in jobs being closer together, 
or the reactive nature of the work results in breaks between jobs. 
 
Figure 10 – Driver Schedule profile segmentations 

 
 
These trip profiles were then analysed against the time of year at which they occurred. Long 
Day and Reactive profiles were more common in the winter months, discussion with British 
Gas has confirmed that this is likely due to increased demand during in the colder 
temperatures for non-routine and emergency callouts (Figure 11).  
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Figure 11 – Volume of trip events plotted according to trip profiles, based on historic ICEV data 

 

 
 
Reactive profiles were characterised by travelling far shorter distances, in contrast to Long 
Day profiles which saw a long tail of drivers travelling beyond 125 miles (though this would be 
in very small numbers). The median distance travelled per day for Standard profiles was found 
to be around 25 miles, well within the expected range of an EV (Figure 12). 
 
Figure 12 – Observed distances travelled by ICEVs according to trip profile 

 

 
 
With only EV telematics data from the summer of 2021 available at the time of writing, it is not 
yet possible to assert any definitive conclusions on the observed British Gas EV behaviour. 
Nevertheless, there have been some interesting aspects of the data that could represent early 
findings and the basis for further investigation. For instance, when comparing the EV schedule 
profiles with the ICEVs, it appeared that proportionally drivers that have volunteered for an EV 
could be more likely to be driving longer days. They also appeared to be proportionally less 
likely to operate reactive schedules, perhaps indicating lower confidences amongst engineers 
that EVs would reliably have sufficient range at the time of day or night when the trip was 
required, and therefore lower likelihood of engineers operating those shifts to volunteer for an 
EV. 



Early Learning Report on the Trials 

 

 
 
Optimise Prime  Page 29 of 101 
 
 

 CP profiles 

2.6.5.1 Unmanaged 

Using daily departure and return times for the British Gas fleet from the telematics data, the 
expected power and energy demands on the grid resulting from the EV fleet were simulated. 
Due to the pattern of typical working hours for most drivers, peak energy demands from British 
Gas drivers would coincide with times of network constraint – the period between 5pm and 
8pm – if the vehicles were to pursue unmanaged charging (Figure 13). Appendix 6.1 shows 
some examples of predicted demand on specific LADs. 
 
In a worst-case scenario, with around 50 drivers operating in each LAD, shift schedules would 
suggest that around 30 simultaneous charge events could be initiated (equating to around a 
60% of the chargers being in use simultaneously) the power demand from this scenario would 
be significant.  The load on each domestic connection could become even higher if additional 
chargers were installed in the future to charge personal vehicles in addition to the van, or if 
higher power chargers were installed.  
 
Figure 13 – Average Total Real power demand (kW) and Energy demand (kWh) derived from 
home-based, British Gas EV charging for a modelled LAD  

 

 
 

2.6.5.2 Managed 

The Trials then investigated possible ways to mitigate this. Deferring the charging but not 
imposing a limitation on charging power wouldn’t necessarily resolve the issue since it would 
only re-position the demand and create a new peak later in the evening. 
 
This was found to be the case even when the start time for deferring charging was randomised 
across a three-hour period, as shown in Figure 14. Load Balancing, achieved by spreading 
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the power requirements for charging EVs across the whole period while the vehicles are 
connected, would be more effective in reducing peak loads, creating a much lower but broader 
peak. Such a control method does however require an understanding of how long the vehicles 
will be plugged in to plan effectively and ensure all vehicles are charged by the time they are 
needed. It should be noted that this analysis has been completed using an estimation of load, 
and these results may differ when applied to the real-world charging demand currently being 
collected by the project.  
 
Consequently, the trials determined at this stage that load balancing should be incentivised 
and not merely load shifting in order to minimise constraint. This will be explored further in the 
context of the flexibility trials as flexibility could potentially also be used to smooth out peaks 
resulting from deferred unmanaged charging. 
 
UK Power Networks’ Shift innovation project has recently considered a number of incentive 
mechanisms for managing the load from domestic charging, including time of use and 
capacity-based DUoS pricing, as well as flexibility services. The potential for these to apply to 
commercial vehicle charging in a domestic setting will be considered as the trial progresses. 
Through this work, similar conclusions were reached with regard to the impact of load shifting, 
which was found to reduce peak load when EV uptake was low, but create a potentially higher 
overnight peak at higher levels of adoption, especially when the underlying demand profile 
had existing overnight demand, such as overnight heating.  
 
Figure 14 – Comparison of simulated power demand resulting from Unmanaged and deferred 
charging scenarios 

 

 

https://innovation.ukpowernetworks.co.uk/projects/shift/
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2.7 Insights gained 
While data analysis is at an early stage the project has already made good progress in 
progressing activities that will test the hypotheses posed by the trial experiments. Optimise 
Prime will be able to provide more conclusive results once a larger dataset is available. The 
following section draws on the analysis presented above and relates the findings to the 
experiments. Section 2.7.2 provides further insights gained outside the scope of the 
experiments that may be of interest to project stakeholders. 

 Addressing the experiment hypotheses 
 

CEN_Ex_01 Initial hypothesis: The relative contribution of unmanaged charging of 
charge-at-home EVs to overall home electricity consumption can be predicted using 
analysis of ICEV operation  
 
The trial’s analysis, based on the study of ICEV data, has found that the charging of EVs is 
likely to significantly increase electricity consumption at drivers’ homes. 
 
Based on this analysis it can be seen that unmanaged charging is likely to result in a peak in 
charging demand between 17:00 and 20:00, coinciding with peaks in household demand on 
the grid. 
 
The accuracy of this modelling will be confirmed as the project collects real-world EV data 
from the fleet. 
 
CEN_Ex_02 Initial hypothesis: The relative contribution of 'smart' charging of charge-
at-home EVs to overall home electricity consumption can be predicted using analysis 
of ICEV operation and unmanaged EV charging behaviour  
 
Both unmanaged and smart charging behaviour has been predicted based on the EV data. 
For smart charging two different models were created – deferred charging, where only the 
time of charging was altered and load balancing, where the peak load on the network is 
minimised. 
 
As with CEN_Ex_01, further work to verify these results against actual EVs will continue as 
more data is captured and smart charging is tested. 
 
CEN_Ex_03 Initial hypothesis: EV charging demand will be influenced by weather and 
seasonal events 
 
The seasonal demand pattern has been studied based on British Gas’ ICEV data. It has shown 
that for this fleet there is predicted to be significant variation in seasonal demand as a result 
of an increased numbers of trips and greater mileage in winter months.  
 
Once the project has an EV charging dataset covering the full year the project will be able to 
further this analysis and separate the impact of changing shift patterns (which may be specific 
to certain fleet types) from seasonal effects on EV efficiency. 
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CEN_Ex_08 Initial hypothesis: Distribution network constraints caused by charge-at-
home commercial EVs will be minimised through combination of smart-charging and 
time of use (ToU) tariffs 
 
Smart charging behaviour has been predicted based on the ICEV data. The modelling shows 
that smart charging could have a significant impact on power demand, however the type of 
smart charging implemented needs to be chosen carefully. Simply shifting the demand later 
may result in higher peak demand if charging events that were more spread out during the 
day/evening were shifted to start simultaneously. Smart charging that is based on load 
spreading or balancing over the time the vehicle is plugged in could reduce peaks in EV 
demand significantly. 
 
Further work to verify these results against trials of unmanaged and smart charging will 
continue as more data is captured. The project will also utilise the data captured from British 
Gas charging events in modelling the impact of home-based commercial vehicles on 
distribution network constraints. 
 
CEN_Ex_09 Initial hypothesis: Reliance on home-based charging only is not suitable 
for vehicles with reactive operational behaviour, travelling large distances or carrying 
heavy loads  

 
To date, the study of the usage of the British Gas ICEV fleet has identified that the majority of 
journeys that are currently performed by British Gas drivers should be possible with the EV 
that has been chosen for British Gas using at-home charging.  
 
Drivers undertaking ‘reactive’ work, outside of normal hours or schedules have been found to 
generally drive shorter than average distances, so this mode of work is unlikely to be a barrier 
to electrification. However, at this stage in the rollout relatively few ‘reactive’ schedules are 
being operated by EVs – this may be due to driver perceptions affecting the decision to convert 
to EV or the seasonality of reactive work.  
 
There are some longer trips taken, in the range of 140-200 miles that might require top-up 
charging in order to be carried out by current generation EV vans. However these trips are 
very few in number. British Gas provide drivers with access to public EV charging networks 
for this purpose. Longer trips carried out by the British Gas fleet are generally focussed around 
the winter months, so it is possible that these may coincide with other seasonal effects that 
reduce the efficiency of EVs. 
 
Further analysis on this will follow, to ensure that real world performance throughout the year 
matches the theoretical capabilities of the vehicles. 

 Other learnings 
In addition to the learnings that directly address the trial hypotheses Optimise Prime has 
generated the following learning from trialling return-to-home charging in WS1: 

• The complexity of rolling out large fleets of vehicles: throughout the project, the 
availability of sufficient vehicles has been a key constraint. Even after orders are 
confirmed, the process of getting the vehicles on the road, and ready to participate in 
the trials is complex and time consuming. The fleet operator needs to balance the 
timing of vehicle availability and fit out with ensuring CPs are installed in the right 
places and that a driver is ready to swap vehicles at the required time. On top of this, 
when engaging in monitoring or smart charging of vehicles, it is necessary to ensure 
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that there are processes in place to accurately map the vehicles with the CPs and 
record any changes. 

 

2.8 Next steps 
The next stage of the WS1 trial will focus on extending the initial analysis and insights 
developed primarily from ICEV telematics data, using EV telematics and CP datasets, as more 
data becomes available. This will enable comparison of predicted charging behaviour with 
observed charging behaviour, under both unmanaged and smart charging conditions, to give 
a more accurate picture of the differences between idealised and actual EV operations, and 
validate the impact in terms of timing and magnitude of power demand on the electricity 
distribution network. 
 
The trials are also gathering and analysing a large dataset of flexibility events: British Gas EVs 
will have the opportunity to participate in more than 240 flexibility events over the remainder 
of the formal trial period. This will provide valuable insight into the potential for return to home 
EV fleets to deliver reliable and cost-effective flexibility services. 
 

2.9 Changes made or planned to the trial methodology 
No significant changes are planned to be made to the WS1 trials at this time. Some minor 
changes have taken place in order to respond to practical constraints on trial delivery: 

• Due to knock on delays in the development of the flexibility systems, the flexibility 
service trials have been re-cast over a shorter period within the trials. It is not expected 
that the learning outcomes will be impacted by this change. 

• Hitachi and Centrica revised some aspects of how flexibility and smart charging are 
controlled and analysed within the project, with Centrica controlling smart charging 
interventions directly. This change should better mirror how an aggregator would 
manage their EV fleet while still delivering value to the project. As part of this, 
Centrica’s flexibility service provider platform will connect directly to the UK Power 
Networks ANM for bidding and dispatch of flexibility events. 

• While Optimise Prime was initially focused only on vehicles in the UK Power Networks 
and SSEN DNO areas, it is now intended to make use of British Gas EVs throughout 
GB in the project experiments where it is not necessary to align charging events to 
geographic locations. This will allow a larger, more statistically robust number of EVs 
to participate in the trials, and allow larger flexibility responses. 

• When the trial experiments were originally written it was thought that the trial would 
have access to actual home energy usage for the trial locations. This is not available 
as it is controlled by each householder. Standard profiles will be used where it is 
necessary to consider the impact of EV charging and flexibility on whole house load. 

• As British Gas’ EV fleet plans have developed it has become necessary for some 
vehicles to be charged with public, rather than home, charging. In some cases this is 
temporary, while awaiting CP installation, while in a small number of cases it is 
permanent where home charging could not be implemented (e.g. due to lack of off-
street parking). The telematics from these vehicles will be utilised by the trials, but they 
cannot take part in flexibility trials or analysis of charging load. 

• As noted in Table 8, some minor changes have been made to the wording of the 
experiment hypotheses. 
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3 WS2 – Learnings from the Depot Trials 

3.1 Overview of the WS2 trials 
WS2 is the depot charging trial, focused on managing the charging of commercial EVs that 
return to a depot each day at the end of their shifts. The trial is collecting data from the vehicles 
and chargers and is testing the provision of flexibility services through the control of vehicle 
charging and the ability of depots to maintain a profiled connection. In Optimise Prime, the 
trial involves over 300 electric light commercial vehicles at nine Royal Mail depots as shown 
in Table 12. The varying sizes of depots, socket numbers and EV fleets are expected to 
provide the trials with insights regarding the applicability of the methods to different depot 
types. 
 
Table 12 – WS2 Depots, CPs and EVs (the exact number of EVs at each site can vary due to 
Royal Mail’s operational requirements) 

 

Depot Charge 
Sockets 

EVs 

Bexleyheath 6 12 

Camden 6 12 

Dartford 22 26 

Islington 24 24 

Mount 
Pleasant 

87 125 

Orpington 6 12 

Premier 
Park 

51 49 

Victoria 6 12 

Whitechapel 33 32 

Total 241 304 

 

3.2 The WS2 experiments 
The WS2 trials are the only ones to address all five trial objectives, and as a result there are 
20 experiments associated with this workstream as shown in Table 13. Some minor changes 
have been made to the wording of the hypotheses for RM_Ex_14 and RM_Ex_20 as explained 
in the table below. 
 
Table 13 – WS2 Experiments 

 

Experiment 
number 

Hypothesis Status 

RM_Ex_01 The impact of unmanaged EV charging on Royal 
Mail depot electricity demand can be predicted 
using analysis of ICEV operation 

Detailed in this 
report 

RM_Ex_02 The impact of 'smart' EV charging on Royal Mail 
depot electricity demand can be predicted using 
analysis of ICEV operation and unmanaged EV 
charging behaviour 

Detailed in this 
report 

RM_Ex_03 EV charging demand will be influenced by external 
factors such as weather and seasonal events 

To be explored in 
deliverable D7 
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Experiment 
number 

Hypothesis Status 

RM_Ex_04 The load profile of Royal Mail depots can be 
predicted based on the degree of electrification of 
the fleet and charging mode adopted (unmanaged 
or 'smart') 

Detailed in this 
report 

RM_Ex_05 The impact of installation of other LCTs on load 
profiles of electrified depots can be predicted 

To be explored in 
deliverable D7 

RM_Ex_06 The need for network reinforcement resulting from 
depot fleet electrification can be mitigated through 
profiled connections 

Detailed in this 
report 

RM_Ex_07 LV distribution network impacts resulting from 
depot EV charging can be predicted 

To be explored in 
deliverable D7 

RM_Ex_08 HV distribution network impacts resulting from 
depot EV charging can be predicted 

To be explored in 
deliverable D7 

RM_Ex_09 Depot vehicle electrification has lower DNO cost 
implications than return-to-home vehicle 
electrification 

To be explored in 
deliverable D7 

RM_Ex_10 EV load shifting can enable adherence to a profiled 
connection without exposing the DNO to 
unacceptable risks 

To be explored in 
deliverable D7 

RM_Ex_11 Profiled connection agreements are financially 
advantageous to both depot operator and DNO 

To be explored in 
deliverable D5 

RM_Ex_12 Profiled connection agreements and flexibility 
services reduce fleet TCO 

To be explored in 
deliverable D5 

RM_Ex_13 Profiled connection agreements reduce lead time 
and costs to electrify fleets 

To be explored in 
deliverable D5 

RM_Ex_14 Smart electrification strategies (load balancing, 
flexibility and profiled connections)6 reduce DNO 
costs 

To be explored in 
deliverable D7 

RM_Ex_15 Optimisation of depot LCTs with the EV fleet 
creates additional benefits 

To be explored in 
deliverable D7 

RM_Ex_16 The availability for depot based EVs to be utilised 
for flexibility services can be predicted from 'smart' 
and unmanaged charging experiments 

Detailed in this 
report 

RM_Ex_17 Standard connection agreements allow for higher 
availability of cheaper flexibility compared to 
profiled connection agreements 

To be explored in 
deliverable D7 

RM_Ex_18 Flexibility will only be a viable option to depots if 
procured on long-term contracts for weekend or 
over-night periods 

To be explored in 
deliverable D7 

RM_Ex_19 DNO current flexibility requirements are unlikely to 
be met by depot based EVs 

To be explored in 
deliverable D7 

 
6 The italicised text has been added to clarify the meaning of ‘smart electrification strategies’ in 
RM_Ex_14 
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Experiment 
number 

Hypothesis Status 

RM_Ex_20 Originally: Royal Mail depot staff will favour 
operability over technological sophistication of the 
solution7 
Updated: 
a) Drivers’ opinions of EVs and related 

technologies will become more positive with an 
increased exposure/experience.    

b) Depot managers are largely supportive of the 
switch to EVs, despite some operational 
challenges.   

c) External factors rather than organisational 
factors are seen as main barriers to EV 
transition by corporate management.   

d) Corporate managers are largely in favour of 
smart charging, while depot managers 
(operational level) are sceptical.      

To be covered in 
deliverable D5 

 

3.3 Status of the WS2 trials 
The WS2 trials began in full on 1 July 2021. At this point the minimum number of vehicles 
required for the trials was on the road, and the systems were in place to record vehicle and 
charging activity.  
 
Prior to the trials several pre-trial executions of experiments were carried out which allowed 
the project to create a number of models and baselines through the analysis of Royal Mail’s 
existing ICEV fleet and the initial group of EVs. 
 
Since the beginning of the trial period the project has continued to capture data from EVs and 
infrastructure. In addition, several initial trials of the project methods have taken place, 
including running profiled connections and flexibility events. These initial trials have largely 
been run to prove the functionality of these methods and throughout the trial period several 
further tests will be run with differing requirements in order to gauge the ability of the Royal 
Mail sites to provide useful services to the distribution networks. The initial results of this 
activity is presented in this report. 
 
The COVID-19 pandemic has occurred during the Optimise Prime project. This is likely to 
have had some impact on the usage of Royal Mail vehicles in the period of the trials and the 
period immediately before. For example, some working practices at Royal Mail, such as 
double crewed vehicles, were suspended to allow for social distancing.  
 

3.4 Methodology 
The WS2 trials involve several activities aimed at simulating EV demand for EV depots, testing 
these simulations against real-world data gained at Royal Mail sites together with the testing 
of different types of flexibility including profiled connections, forward option and day ahead 
auction. 

 

 
7 RM_Ex_20 has been expanded into four hypotheses, reflecting the differing roles of the driver, depot 
manager and corporate fleet manager in transitioning fleets to EV. 
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Modelling tools have been developed and applied to simulate a week of depot operations with 
a certain number of EV and CP assets under different charging modes (unmanaged charging, 
and different smart charging regimes). 

 
The aim was to estimate impact of fleet electrification on network load, relating to potential 
infrastructure upgrades required in the future. The primary type of smart charging modelled is 
referred to as ‘peak load minimisation’, a charging mode aiming to minimise this network 
impact. Secondly, a cost minimisation version of smart charging was also modelled, aiming to 
explore the value of smart charging to the fleet operator through the minimisation of the cost 
of electricity. This modelling was completed for simulation purposes, based on inputs 
regarding the fleet’s existing ICEV operations and proposed EVs. The early modelling work 
also contributed to the development of the logic for a self-service site planning tool that allows 
fleets to model the connection requirements of their planned fleet electrification. 

 
Physical CPs, together with a control system that can alter charging to requested setpoints 
have been installed at Royal Mail depots, as described in the previous deliverables D2 and 
D3. 

 
Throughout the trial period the Royal Mail depots are trialling a programme of charging 
management functionalities, including unmanaged charging (as a base case), smart charging 
methodologies, profiled connections and provision of flexibility services on request from the 
DNO. These real-life trials are allowing the project to verify the accuracy of the predictive 
models.   
 

3.5 Data gathered to support the WS2 trials 
The WS2 trials utilise a number of different datasets in order to both analyse the impact of 
depot charging and to optimise the charging of vehicles within the depots. 
 
Data from charge points is key to understanding when vehicles are charging and how much 
power is being used. This data is received in real-time in the Hitachi solution from Nortech 
iHost, which in turn collects the data from the CPCs and CPs at each site. The main data fields 
collected are described in Table 14. 
 
Table 14 – WS2 CP Data collected via iHost 

 

Dataset Data Collected 

iHost 
Measurements 

EVSE and Socket Identifiers 

Data Point type (describes the state of the CP – e.g. Available, 
Preparing, Charging, Faulted; or a power value – total energy (kWh), 
real power (kW), current limit (A). 

Measurement timestamp 

Measurement value 

Tag ID (the RFID tag that is authenticated with the socket) 

iHost Charging 
Events 

Record, EVSE and Socket Identifiers 

Tag ID (the RFID tag that is authenticated with the socket) 

Charging Start timestamp 

Charging End timestamp 

 
In order to derive the total load at each site, data is collected from Panoramic Power devices 
that monitor incoming feeders. This data is retrieved every five minutes and is captured at a 
one-minute granularity. Table 15 shows the data recorded by Panoramic Power. 

https://www.optimise-prime.com/s/OP_Deliverables_D2_Ver_11.pdf
https://www.optimise-prime.com/s/OP_Deliverables_D3_Ver_10.pdf
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Table 15 – WS2 site load data collected via Panoramic Power 

 

Panoramic Power Dataset 

Device and Site Names/IDs (most sites have multiple devices connected across multiple 
phases and/or feeders) 

Measurement time in UTC and resolution of measurement in minutes 

Measurement of power in W 

Measurement of energy in Wh 

Current (A), Voltage (V) and power factor figures are captured but are based on calculation 
and not actual measurement. 

 
There are three telematics systems in place for different types of vehicles which have varying 
measures and data frequencies. 
 
Axodel is the main source of data from Peugeot vehicles. Data is received in near real time 
via an API (Application Programming Interface) for use in optimisation and is saved for 
analysis once per day. Table 16 shows the main fields collected. 
 
Table 16 – WS2 Telematics data collected via Axodel 

 

Axodel telematics dataset 

Vehicle Metadata (Vehicle Identification Number (VIN), Brand, Model, age, fuel type, etc.) 

Date of measure 

Meter counter (total distance travelled by the vehicle) and Trip Distance (hm) 

Position of vehicle (latitude and longitude) 

Fields showing whether the vehicle is plugged in, charging (and at what power) 

Battery state of charge 

 
Mercedes telematics provides a similar set of data for Mercedes vehicles. Some older Peugeot 
vehicles are connected to a Trimble telematics system. Trimble only provides the project with 
data in periodic batches, and so can be used for analysis, but not as part of real-time 
optimisation. The project also makes use of a Trimble telematics dataset that covers Royal 
Mail ICEV from 2018 to present. This data is similar to the other telematics datasets, but does 
not include items specific to EVs. 
 
Historical Meter data for the Royal Mail depots involved in the project is also used – this takes 
the form of half-hourly meter data per MPAN in kWh. 
 

3.6 Analysis 
 
A number of executions of the experiments in the depot charging trial have been carried out 
with the datasets available to date. This primarily involved analysis of telematics data from the 
existing ICEV and EV fleets. This section summarises the activities and insights gained from 
this initial analysis. 

 Operational schedules 
 

The Trials analysed the ICEV operational schedules at a depot level using a clustering 
algorithm based on the telematics data. For each depot, data on vehicle movements were 
organised to categorise operational groups (according to the depot leave time, depot return 
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time and average daily mileage), while each were ascribed the proportion of the total fleet they 
represented at their depot. 
 
Generally, there were three main schedules that accounted for the majority of operations at 
each depot (see example schedules for Whitechapel, Table 17) supplemented by 1-4 minor 
schedules that made up the balance of journeys. 
 
Table 17 – Whitechapel's operational schedules 

 

Schedule Depot Leave 
Time 

Depot Return 
Time 

Daily Distance 
(miles) 

% of Vehicles 

1 07:00 18:30 25.1 36 

2 08:30 13:00 11.3 33 

3 10:00 18:00 21.6 27 

 
Activity on Sunday was rare across the Royal Mail depots, although the data suggested there 
were occasional trips occurring at Mount Pleasant and Dartford. These trips were inspected 
and at Mount Pleasant it was found that the trips had an average distance of 35 miles (vs. a 
weekday average of around 20 miles). This suggested they could be relevant, non-trivial 
business activity (Figure 15) and it was confirmed with the depot manager at Mount Pleasant 
that the depot was undertaking operations on Sundays.  
 
Figure 15 – Distances travelled by vehicles at Mount Pleasant depot on Sundays 

 

 
 
Through detailed analysis of the ICEV telematics, the trials were able to construct a reliable 
picture of the business operations of the fleet at each of these depots. Understanding this is 
fundamental to being able to model and plan electrification at these sites, and ultimately 
supporting the transition of the ICEV fleet to EV. Having built a solid understanding of these 
operational schedules, the trials progressed to modelling EVs fulfilling those operations at the 
Royal Mail depots. 
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 Trip profiles, per depot 

3.6.2.1 Expected EV behaviour and impact 

Initial analysis on EV operational schedules revealed some interesting deviations in how EVs 
are operated compared to ICEVs. ICEVs were generally found to operate three main 
schedules, as shown for the example of Dartford (Table 18), with other minor schedules also 
in operation for a smaller proportion of the fleet. 
 
Table 18 – Operational schedules for ICEVs at Dartford 

 

Schedule Depot Leave 
Time 

Depot Return 
Time 

Daily Distance 
(miles) 

% of Vehicles 

1 08:30 13:30 14.2 34 

2 05:30 13:30 19.8 32 

3 09:00 18:00 41.4 20 

4 06:00 17:30 36 13 

 
By contrast, Royal Mail was found to operate their Peugeot EVs at Dartford on more stable 
schedules, with all following the same pattern of leaving at 8:30am and returning at 13:30pm, 
travelling an average of 18.9 miles (Table 19). This EV behaviour was mirrored at Premier 
Park, with both sites depicted on the density plot (Figure 16) as one concise plot connecting 
concentrated leave and return times. Royal Mail depots have considerable flexibility over how 
vehicles are allocated to routes, so it is likely that EVs have purposefully been allocated to a 
specific route where depots have a variety of EVs and ICEVs. It should also be noted that the 
EV data covers a shorter period and may not take account of seasonal changes of schedule. 
 
Table 19 – Operational schedules for EVs at Dartford 

 

Schedule Depot Leave 
Time 

Depot Return 
Time 

Daily Distance 
(miles) 

% of Vehicles 

1 08:30 13:30 18.9 100 

 
At Bexleyheath, Orpington, Islington and Whitechapel, EVs also followed a second operational 
schedule, resulting in a fainter cluster accompanying a prominent cluster, illustrating some 
vehicles were leaving and returning at alternate times. It should be noted that EVs have been 
monitored for a more limited time, so further schedules may become apparent with seasonal 
variation. 
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Figure 16 – Density plot of depot departure and return times for Royal Mail EVs, colour 
represents schedule type 
 

 

 Charging load modelling 

3.6.3.1 Unmanaged Charging 

The trials modelled unmanaged charging schedules for each depot constructed from the 
operational schedules of ICEVs. The energy requirements for the fleet were calculated using 
information on EV battery capacity and vehicle ranges, according to manufacturer’s published 
data, coupled with the daily distances and schedules of the vehicles. These energy 
requirements represented the battery usage of EVs in kWh needed for the vehicle to fulfil its 
daily operations. Using this information, it was possible to simulate the variation in total fleet 
energy requirements (kWh) and charging load (kVA) throughout a seven day period for each 
depot.  

3.6.3.2 Smart, managed charging 

Having simulated the viability of using unmanaged charging to deliver the charging 
requirements of the fleet, the trials worked to develop further simulation models to evaluate 
how smart charging could achieve benefits for Royal Mail and for the grid. The model enabled 
prediction of energy requirements, plug-in/plug-out time and state of charge (SoC) for vehicles 
at each depot, while incorporating times vehicles are able to charge at according to operational 
schedules learnt from telematics data. 
 
This facilitated the generation of smart charging schedules that could either minimise the peak 
load required to charge an EV fleet at each depot, or minimise the energy cost of charging the 
vehicles. These two simulations of smart charging behaviour were named peak load 
minimisation and cost minimisation. The logic underpinning this smart charge modelling by 
the Optimise Prime team of Data Scientists is in Appendix 6.2. 
 
The trials applied these models to develop smart charging simulations of eight Royal Mail 
sites: Bexleyheath, Camden, Dartford, Islington, Mount Pleasant, Orpington, Premier Park and 
Whitechapel (see example for Mount Pleasant in Figure 17) The ninth depot at Victoria had 
not been added to the project scope when this analysis was carried out. The results indicated 
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that using smart charging could yield benefits for both Royal Mail and the DNO. Generally, 
these benefits were as follows: 

1. Using the model enabled a lower value of maximum demand being possible within the 
connection agreement, when compared to a business-as-usual unmanaged case, as 
the peak power demand could be reduced while still providing sufficient charge to the 
fleet. 

a. This would minimise cost for Royal Mail as there would be no need to upgrade 
their current Authorised Supply Capacity (ASC), saving capital, resource and 
time 

b. This would benefit the DNO as network capacity could potentially be utilised by 
other customers. 

2. Using the smart schedule directly facilitated electrification of more vehicles within the 
current ASC. 

a. This would benefit Royal Mail as it would remove a potential barrier to the 
further electrification of their fleet. 

 
Figure 17 – Total charging load mapped over a seven day period according to a peak load 
minimisation managed smart charging schedule at Mount Pleasant 

 

 
 
As Figure 17 displays, smart charging can minimise the site’s power demand through 
management of charging. In this Mount Pleasant case, site operations could be carried out 
with a peak load 715 kVA lower than the existing ASC. 
 
Using linear programming, it was possible to estimate a feasible charging schedule that could 
support EVs within the ASC, framing the problem as a minimisation problem with appropriate 
constraints. The objective function of the optimisation was written such that the schedule also 
aimed to avoid times when energy was more expensive. As a consequence, Royal Mail could 
have cheaper weekly energy bills, and the local DNO would benefit from the diversion of 
energy demand from peak times, the periods where they attribute a higher price per kWh.  
 
Applying this simulation to Royal Mail’s largest site, Mount Pleasant, it was found that vehicle 
charging could be managed within the available headroom (defined as the grid connection 
limit minus the power required for non-EV charging purposes), while only charging at the times 
when the electricity tariff was cheapest (Figure 18). On the graph the yellow line represents 
the cost of charging; the red line the site’s headroom and the blue area the combined charge 



Early Learning Report on the Trials 

 

 
 
Optimise Prime  Page 43 of 101 
 
 

of the vehicles at the site. The green line represents charging activity, where it has been timed 
to occur when the vehicles are at the depot, at the times of lowest power prices and within the 
available headroom, successfully returning the charge of the vehicles to the same level as at 
the beginning of the week. 
 
Figure 18 – The simulated site headroom relative to the ASC for Mount Pleasant, plotted 
alongside the vehicles' State of Charge (SoC) and the varying price of electricity (Tariff Data) 

 

 
 

3.6.3.3 Analysis of connection cost implications 

A sample of 20 Royal Mail depots were analysed with the project’s depot planning model in 
order to ascertain the peak load from current electrification plans and potential future full-depot 
electrification. Three cases were modelled for each depot: 

• The base case where all CPs are used at once at the time of peak load;  

• an unmanaged case where vehicles are charged at the maximum possible rate as 
soon as they return to the depot,  

• and a smart charging case where charging times and speeds were flexed to fit under 
the ASC or, if this was not possible, exceed it by the smallest possible margin. 

 
The resulting loads were assessed by UK Power Networks’ connections team to obtain an 
estimate of the connection cost for each scenario. It should be noted that this was an estimate 
based on a desk-based exercise and not a full quote, as detailed site surveys were not carried 
out. The result of this is shown in Figure 19.  
 
In the base case, 17 of the 20 depots required some form of connection upgrade to enable 
site electrification, with estimates in the range of £80,000 to £190,000 per site. In the 
unmanaged charging case all 17 would also need upgrades, but the costs of some sites were 
lower, ranging from £15,000 to £180,000. The smart charging case demonstrated a significant 
reduction in connection costs – most depots could charge within their existing ASC if smart 
charging was used to reduce peak demand, with only three sites requiring minor (£2,000 - 
£12,000) upgrades. While the cost of connections is site dependent and difficult to predict, this 
initial sample shows a significant potential benefit to the connecting customer of smart 
charging. 
 
The time connect was also considered for a number of depots. The maximum timescale in the 
base case was between 6-12 months, whereas in the smart charging scenario this was cut to 
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12-14 weeks, with the majority of the depots not requiring a lead time for an upgraded 
connection. 
 
Figure 19 – Connection cost estimates by depot and scenario 

 

 

 Profiled connections 
 
Profiled connections are a proposed new type of connection product where the DNO and 
customer can agree to a connection profile that can vary in 30 minute blocks across the day. 
This allows a profile to be negotiated that matches the power demand of the customer with 
local network constraints, allowing more customers to connect before upgrades to network 
infrastructure are needed. 
 
Early work related to profiled connections focused on analysis of the Royal Mail sites to identify 
the potential to reliably maintain a profiled connection. The work built on the earlier analysis 
of smart charging schedules and the logic of the depot electrification models to define potential 
profiled connections for each site.  
 
The profiled connections were established using three primary foundations of logic: 

- Days were split into three “time blocks” per day: the time block of constraint and then 
the two periods either side of it.  

- Each time block in each profiled connection has the lowest capacity (kVA) that could 
be adhered to during the simulation. 

- Rules-based business logic simulated the charging load. 
o For example, using a certain smart charging policy, and ensuring that vehicles 

never drop below 20% SoC. 
 
For the purposes of the trials, profiled connections are planned as pseudo profiled 
connections, whereby the new profile would be imposed below the existing connection 
agreement (Authorised Supply Capacity, ASC). This was required to mitigate the risk of an 
eventual breach in profiled connection limit resulting in damage to network equipment, while 
maintaining ability to explore the extent to which EV charging could be managed within a 
variable connection limit. 
 
Taking the time of network constraint as an input, 5pm to 7pm in the case of Dartford, the 
model showed that load could be minimised at this time of day, by increasing at other times of 
day. A pseudo profiled connection was developed, with three limits per day as shown by the 
red dotted line in Figure 20. 
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Figure 20 – The simulated profiled connection for Dartford, and the time-block segmentation 
and associated capacity 

 
 
This approach will be developed further in subsequent profiled connection experiment runs, 
using more granular network constraint data as an input to create a profile varying up to 48 
times per day.  
 
Following the development of the proposed profiled connections, they are currently being 
trialled at each of the depots, by entering the profiled connection into the depot optimisation 
system so that EV charging is managed to keep total site demand below the profiled 
connection.  
 
While full analysis of the initial results is still ongoing, initial observations have been 
encouraging.  Figure 21 shows the demand at Premier Park Depot before and after the 
imposition of a profiled connection. The light blue bars show uncontrollable background 
demand and the dark blue bars controllable EV demand. The red line is the connection limit 
imposed on the site and the orange line is a target limit the system is trying to maintain load 
to. As can be seen, the day on the left of the chart, with no profiled connection in place results 
in a much higher peak demand than the day on the right side of the chart, where demand is 
spread out.  
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Figure 21 – Profiled connection at Premier Park depot 

 
 

 
 
At some locations, for example where EV charging makes up a small proportion of overall load 
or where there are unpredictable patterns of background load, profiled connections may be 
viable as a means of freeing up network capacity, but it may be more difficult for the control of 
EVs to actively ensure compliance with profiled connections. This is because the variability in 
the background load can be greater than the change that can be achieved though control of 
EVs. 
 
Ongoing experiments and analysis are looking at the effectiveness of profiled connections, 
and the use of EV charging management to maintain them, at depots with a range of different 
EV populations. 

 Flexibility 
 
With the simulated profiled connections indicating that smart charging could help support 
electrification of fleets within current electrical capacities of the Royal Mail sites, the trials then 
investigated the extent to which smart charging could alleviate constraint on the grid 
dynamically in response to flexibility requests. The distribution network may need to limit 
supply at designated times in response to occasional anticipated spikes in demand, and so 
could request local energy consumers to temporarily suppress their energy demand to mitigate 
the peak. This allows the DNO to avoid network reinforcements and keep costs down for all 
network customers. Providing this flexibility for the distribution network, by adjusting the 
charge schedule in response to these requests, would provide value for Royal Mail – since it 
can be monetised – and would benefit the network operator’s customers as easing spikes in 
demand or capacity constraints may provide a more cost-effective option than building new 
network infrastructure. Optimise Prime is exploring seven flexibility parameters through the 
trials, as shown in Table 20. 
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Table 20 - Flexibility Parameters 

 

Parameter Learnings to date / Future plans 

Cost: At what value (£/kW/h) 
is it economical for fleets 
and PHV operators to 
provide flexibility services? 
How does the response 
quantity/quality vary with 
price? 

The initial trials have calculated a basic price for flexibility 
using a calculation based on several factors. In general, 
responding to flex results in a lower power cost, as in most 
circumstances businesses are asked to flex from high-cost 
times. Larger volumes of flex are likely to be cheaper (in 
terms of £/kW/h) due to the fixed costs of responding to 
events 

Magnitude: What is the 
aggregated total amount of 
load (kW) that can provide 
flexibility services for a 
given type or number of 
EVs? 

Over time the trials will assess offering different 
proportions of the charging load. Initial trials have 
identified that predicting the controllable load at any time 
is key to increasing magnitude. The vehicles used also 
impacts magnitude, as charge speeds differ. The project 
is focusing on improving these predictions and the 
proportion of the load that can be controlled. 

Duration: How long (hours) 
can this flexibility service be 
sustained for? 

Trials have so far focussed on short (1-2 hour) flexibility 
periods and this will be varied in future trials. 

Responsiveness: How 
quickly (days, hours, 
minutes) can commercial 
EVs respond to take part in 
flexibility activities? 

In the WS2 trial, initially assets were dispatched at the time 
flexibility was requested for. This was found to be 
unreliable, as it could take a short time for the setpoints to 
be enacted. The timing has been adjusted to initialise the 
setpoint change 15 minutes before the required time and 
this appears to be ensuring the load changes by the time 
the flexibility event begins. 

Proximity: How does the 
response or cost vary with 
the length of notice given to 
the fleet or PHV operator? 

The three flex products (A, B and C) will test the response 
from month-ahead, day-ahead and intraday bids across 
WS1 and WS2. To date we have identified issues with 
accurately predicting load in both products A and B – 
comparative performance will be studied as the trial 
progresses. 

Make-up: Is there a variation 
between availability and 
utilisation payment values 
that delivers the lowest 
service cost? 

Product A includes separate availability and utilisation 
payments. Future activities will consider the optimum 
balance given the costs of flexibility provision. 

Predictability: How 
predictable is the flexibility 
from commercial fleets and 
PHV operators? Can it be 
relied upon to deliver when 
requested by the DNO? 

Initial trials have highlighted the importance of accurately 
predicting load in order to make bids and deliver flexibility. 
While flexibility has been delivered, the baseline has not 
always followed what was predicted and improving the 
predictions will be a future priority for the project. This is 
discussed further in Section 3.6.5.2 

 

3.6.5.1 Modelling Flexibility 

The trials built a model to simulate availability considering both flat connection agreements 
(characterised by unmanaged charge schedules) and profiled connections (underpinned by 
smart charging). Key learning objectives for the exercise were to: 

- Predict trends in flexibility availability/cost given the simulated connection types (flat or 
profiled), as well as considering the time of day/month. 
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- Determine patterns in flexibility availability/cost. 
- Evaluate predictive capabilities for depot flexibility over different time scales, for 

example how long before the fact could flexibility availability be accurately predicted. 
 
The model supported two modes of flexibility, as shown in Figure 22: 

a) Shifting demand from a request window to a “shifted window” of the same length, 
commencing immediately after the request window. 

b) Spreading the demand from the request window to a “shifted window” of a potentially 
different length to the request window, up to a determined cut-off time. 

 

A flexibility request would be accepted if the demand could be turned down and transplanted 
to the shifted window. A request would be rejected if either the CP demand could not be 
reduced in the request window, or if the extra load added to the shifted window exceeded the 
ASC of that depot.  
 
Figure 22 – Flexibility model modes 

 

 
 
The model was applied to example scenarios to test and demonstrate the logic. In the 
successful example (Figure 23), the CP load – the purple line – quickly drops from the 
predicted load (the blue line) to fulfil the request (during the red shaded period), and then 
spikes at the termination of the request window to recover the charge that was deferred (during 
the blue shaded period). At all times the predicted charging power is above zero and the site 
load is below the ASC. 



Early Learning Report on the Trials 

 

 
 
Optimise Prime  Page 49 of 101 
 
 

 
Figure 23 – Example of an accepted flexibility request 

 

 
 
Figure 24 shows and unsuccessful example of a flexibility request. In this example, the CP 
load is predicted to be lower than the flexibility requested and in order to fulfil the request the 
modelled CP load (the purple line) would have to decrease to below 0, and consequently the 
request was rejected. 
 
Figure 24 – Rejected request, illustrating the CP load would have to drop below 0 to satisfy the 
suppression demands of the flexibility request 

 

 
The trials are currently investigating this practically on the Royal Mail depots, using the logic 
and experience gained from the conceptual work here. To do this, UK Power Networks are 
tendering for flexibility from the Royal Mail depots in two products: A (forward option) and B 
(day ahead spot), described in Table 21. The feasibility of providing flexibility will be analysed 
to create a bid (a month ahead for Product A and Day ahead for product B) and, provided the 
bid is successful, flexibility will be dispatched and a settlement process run to verify whether 
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delivery was successful. Throughout the trials a range of different volumes and durations of 
flexibility will be requested to test the capabilities of the sites. 
 
Table 21 – Optimise Prime flexibility products A and B 

 

ID A B 

Product Firm Forward Option Spot Auction 

Timescale Forward (months to years ahead) Spot (Day-Ahead or Intra-
Day) 

Procurement Tender Auction 
Standardised bids 

Market clearing Pay-as-bid Pay-as-clear 

Dispatch Operational timescales  
Partial dispatch 

Scheduled at auction award 

Baseline Recent history 
Last Observation 

Forward schedule OR 
Recent history 
Last observation 

Payment Availability and Utilisation Utilisation 

3.6.5.2 Flexibility results 

During August 2021 the trials ran the first series of flexibility events. One of these between 23 
August 2021 and 5 September 2021 was focused on testing a simple, large turndown request 
on weekdays, and was run as a test of Product A. This test occurred across three depots: 
Dartford, Mount Pleasant and Premier Park.   
 
Outline of test:  

• Bid 80% turndown against expected load 

• Weekdays only 

• 15:00 – 18:00 local time (BST) 
 

The aim of this trial was to test the maximum flexibility that could be delivered. 100% turndown 
was not tested as, in order to avoid disruption to Royal Mail operations in this stage of the 
trials, CPs are not turned down below 6A, and unrecognised EVs plugging into the depot 
infrastructure are not controlled. The expected load was predicted based on analysis of 
available demand on these days and times. 
 
In response to a tender from UK Power Networks a bid was submitted in line with the rules for 
Product A, an example of this for Dartford is shown in Table 22. 
 
Table 22 – Example tender response for product A flexibility 

 
Bid Information  Values  Description  

FU Reference  Dartford  The depot or (Flexibility Unit)  

Day  Thursday  Day to execute the turndown  

Flexible Capacity (kW)  22  Amount in kW to be turned down below the 
expected EV load  

Maximum Run Time (hours)  3  Total hours for the turndown to last  
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Recovery Time (min)  1,440  Minutes post turndown for the total energy to be 
recovered  

Response Time (min)  30  Minimum minutes before the turndown required 
for the DNO to request a turndown  

Availability Fee (£/MW/h)  11  Fee paid to flexibility unit for flexible capacity 
being available (whether it is utilised or not)  

Utilisation Fee (£/MWh)  174  Fee paid to flexibility unit for flexible capacity 
being utilised  

 
Once this bid is accepted by the DNO, the DNO can then send a dispatch to the system 
controlling the EV load. The dispatch sets the level of flexible capacity to be provided during 
a pre-agreed window, within the limits set out in the bid. Taking the example of a Monday at 
Dartford, a turndown dispatch can be seen in Table 23.  
 
When the flexibility event is enacted the charging system attempts to reduce EV load at the 
depot by the flexible capacity requested in the dispatch message. A single day’s example of 
this can be seen in Figure 25 for Dartford on 26 August 2021. It’s clear to see pre-flexibility 
the load per 30-minute Programme Time Unit (PTU) was close to the expected baseline, 
showing that in this event the forecast was accurate. During the flexibility event a clear 
reduction can be seen against the previous measurements and the predicted baseline. There 
is also a higher than predicted load in the following periods as load increases to offset the 
flexibility provided. 
 
Table 23 – Example of a Product A dispatch request 

 

26/08/2021   Flexible downturn requested in kW  

15:00  22  

15:30  22  

16:00  22  

16:30  22  

17:00  22  

17:30  22  
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Figure 25 – Results of a single flexibility event at Dartford 

 

 
 
The initial trials of flexibility have been generally successful in demonstrating the ability of the 
fleets to provide flexibility, they did highlight a number of issues that needed to be addressed: 

• The effectiveness of the ahead of time base lining varied by site, and in some cases 
the load at time of delivery was higher than what was predicted, for example due to 
the addition of new vehicles or other loads. The project will continue to look at the 
impact of these changes on the ability to deliver flexibility as requested. This is 
explored further in Section 3.6.5.3. 

• Due to the limitations put in place on which vehicles would be charged, there were a 
number of vehicles at some depots that were not actively controlled (for example 
vehicles that hadn’t identified through a known RFID card). The minimum charge 
speed also impacted the change of rate differently, in percentage terms, depending on 
the vehicle being charged. As a result the 80% target for EV load reduction was not 
achieved. Future trials will take into account more data regarding controllable charge 
when calculating flexibility bids.  

• It was noticed that the system was reducing demand after the start of the turndown 
period, rather than ensuring the change had started before the turndown period begins. 
The timing of the flexibility turndown has been altered, with assets dispatched 15 
minutes prior to the flex period start, to better respect the requirements of the product 
in future trial runs. 

 
Testing of product B flexibility is at an earlier stage and as such limited analysis has been 
carried out on the performance of the assets. A test of the end-to-end bid and dispatch process 
for product B flexibility has been carried out at the Dartford depot and the resultant charging 
load is shown in Figure 26. In this test, a flexibility test was run where UK Power Networks 
was procuring a turndown from 16:00-18:00 of between 2 and 6 kW based on a submitted 
baseline.  
 
As can be seen in the graph, the flexibility test resulted in a turn-down in instantaneous 
demand slightly larger than what was originally requested and it was maintained through the 
event. However, the actual load was higher than expected in the bid, both in terms of the 
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baseline demand and the demand after the flexibility reduction. Work is ongoing to see how 
the accuracy of the forward baseline can be improved. As with flexibility product A, 
unrecognised vehicles which could not be controlled limited the ability to reduce the charging 
demand further. 
 
Figure 26 – Product B flexibility test at Dartford (EV load in kW) 

 

 
 
Subsequent flexibility trials have included an expanded number of depots and have been 
targeted to reduce peak load. The graph in Figure 27 shows the EV load at the Mount Pleasant 
Mail Centre over four days, the first two in an unmanaged mode and the following two providing 
product B flexibility. While there are still peaks in demand as vehicles plug in, the maximum 
demand is halved from 250 to 125kW, with the load spread throughout the night. 
   
Figure 27 – Comparison of unmanaged demand and delivery of flexibility at the Mount Pleasant 
Mail Centre (EV load in kW) 
 

 

3.6.5.3 Baselining 

A key part of making a bid for the Optimise Prime flexibility products is baselining load – 
predicting what the charging load is at any time, and what proportion of this can be offered as 
flexibility.  
 
The impact of inaccurate baselines varies by product. In Product A, performance is measured 
based on comparison to previous time periods, or previous days, so performance against 
precalculated baseline does not directly impact performance if the flexibility is delivered. 
However, inaccurate baselines can result in bids that cannot be realised, or potential flexibility 
that is not used. In Product B, a 24-hour baseline is submitted to the DNO as part of the bid, 
and ability to keep to the baseline is directly rewarded as part of the settlement methodology.  
 
There are several factors that can impact on the ability to accurately baseline load: 

• The predictability of EV use patterns – when EVs return to depot, plug in, and how 
much they need to charge on each day. For example, in the first Product A trial, Figure 
28 shows the baseline demand used for the bid calculation a month ahead (the red 



Early Learning Report on the Trials 

 

 
 
Optimise Prime  Page 54 of 101 
 
 

line), it can be seen however that the actual load on the day (the blue line) was 
significantly higher across all three depots. As a result, although the decrease in load 
was generally achieved, the outcome was significantly above the predicted post-flex 
load (the green line). 

• The trialling of different flexibility products and smart charging methods can make 
baselining more difficult. It may be necessary to go back further in time to model a 
baseline off normal load without other influences, and load patterns may have changed 
over this time. 

• Ability to reduce charging demand, given that there are some limitations, such as 
vehicles that cannot be controlled and minimum charge rates.  

• Some flexibility products require a static baseline over a period of time, but load varies 

• The need to accommodate demand displaced by flexibility periods, given that whether 
the bid for any particular period is going to be accepted is not known at the time of the 
baselining. 
 

In Figure 28, the black line indicates what is calculated to be the minimum load achievable, 
given a) charge events that could not be controlled, and b) a minimum 6A (1.4kW) charge 
being provided to all controlled vehicles. As can be seen from the graph, the system was 
generally successful at reaching this minimum demand, but the minimum demand was 
significantly in excess of the pre-calculated baseline. 
 
Figure 28 – Flexibility vs. Baseline 

 

 
The main reason for non-controllable loads at Royal Mail sites is vehicles identifying with an 
unknown RFID tag. As shown in Figure 29, there is a proportion of charging events (around 
10%) where the project systems do not recognise the RFID (shown in blue) and charging is 
not controlled. The number of RFID tags in use and the number of uncontrollable charge 
sessions varies over time, making accurate prediction of available flexibility more difficult. 
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Figure 29 – RFID tags used at Royal Mail Sites 

 

 
 
Early predictions of the baseline were based on analysis of average electricity load over 
previous periods, however it has become clear that this alone is not adequate to produce an 
accurate result, as it did not account for changes over time in depot operations. Capacity for 
flexibility was also simply calculated as a percentage reduction in predicted load. Work is now 
ongoing to improve the baseline methodology, taking into account a wider range of factors, 
such as the varying number of vehicles charging, and to make a more accurate prediction of 
available flexibility. Changes have also been implemented to reduce the number of 
unrecognised charging sessions through improved management of vehicle RFIDs. The project 
may also consider the reduction of charging rates to zero on charge points, increasing the 
flexible load that can be made available, however the benefits of this need to be weighed 
against the risk of interruption to Royal Mail’s operations. 
 

3.7 Insights gained 
 
The WS2 trials conducted at Royal Mail depots have begun to provide data that helps Optimise 
Prime meet the trial objectives. As with WS1, a more definite answer to the trial experiments 
will emerge once a longer EV charging dataset is available, but there is increasing confidence 
in the ability of the trials to meet the objectives. 

 Addressing the experiment hypotheses 
 
RM_Ex_01 Initial hypothesis: The impact of unmanaged EV charging on Royal Mail 
depot electricity demand can be predicted using analysis of ICEV operation 
 
The operational schedules of fleets have to be taken into account when electrifying as vehicle 
distance travelled and depot leave/return times are key when predicting EV energy 
requirements and charge point plug-in/plug-out times. 
 
The Royal Mail operational schedules that were analysed varied from one depot to another, 
and varied depending on vehicle type (EVs/ICEVs). 
 
As the trials progress more data will be collected allowing the project to compare these 
modelled operational schedules against the real-world performance of the EV, taking into 
account potential seasonal changes throughout the year. 



Early Learning Report on the Trials 

 

 
 
Optimise Prime  Page 56 of 101 
 
 

 
RM_Ex_02 Initial hypothesis: The impact of 'smart' EV charging on Royal Mail depot 
electricity demand can be predicted using analysis of ICEV operation and unmanaged 
EV charging behaviour 
 
The simulations of smart charging based on ICEV data showed that peak load minimisation 
and cost minimisation could be achieved at Royal Mail depots. The accuracy of these 
simulations will be modelled as further data becomes available from EV charging in each of 
the modes. 
 
The modelling indicated that smart charging schedules could yield cost savings for Royal Mail 
and other depot-based fleet operators by managing charging load to avoid peak energy cost 
times. The same technique should also alleviate pressure on the distribution network at times 
when it is most constrained. 
 
In addition to reducing costs from peak energy usage, estimates of connection costs for the 
full electrification of several Royal Mail sites have been carried out. It was found that in all of 
the sites studied, connection costs could be avoided or significantly reduced if peak load was 
reduced through peak load minimisation based optimisation. 
 
RM_Ex_04 Initial hypothesis: The load profile of Royal Mail depots can be predicted 
based on the degree of electrification of the fleet and charging mode adopted 
(unmanaged or 'smart') 
 
As part of the modelling of different load scenarios for RM_Ex_01 and RM_Ex_02, expected 
load profiles have been produced for Royal Mail depots in different charging scenarios. These 
will be compared against actual results throughout the year to judge the accuracy of the 
predictions. 
 
RM_Ex_06 Initial hypothesis: The need for network reinforcement resulting from 
depot fleet electrification can be mitigated through profiled connections 
 
Profiled connections have been simulated and trialled at the Royal Mail sites. Initial trials of 
the profiled connection systems are at an early stage but have shown that it is possible to 
control overall load in line with a profile at some sites through the use of EVs. There is likely 
to be a need for a minimum volume of EV load, in proportion to background site load, for the 
EV load to be able to be controlled without background load breaching the profile. 
 
Future work in this area will look at the cost (and potential savings) of providing profiled 
connections and the impact of this on the connecting customer and the DNO, in addition to 
continuing to revise and test different profiled connection scenarios at the sites, such as more 
granular and varying profiles. 
 
RM_Ex_16 Initial hypothesis: The availability for depot based EVs to be utilised for 
flexibility services can be predicted from 'smart' and unmanaged charging experiments 
 
Smart charging has the potential to facilitate participation in flexibility markets which could 
provide even greater value to the network operator by adapting the charge schedule to 
accommodate dynamic requests to turn down energy usage. Initial trials have shown an ability 
to deliver flexibility on demand from EV charging at Royal Mail depots based on dispatches 
from the DNO. 
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The tests did however highlight some issues that may affect the reliability of depot demand 
response, such as the limited predictability of vehicles at some locations, and reliance on 
authentication of vehicles to provide demand response in the trial method. Further trials will 
continue to quantify these issues and consider potential solutions to maximise availability of 
flexibility.  

 Other learnings 
 
In addition to the learnings that directly address the trial hypotheses Optimise Prime has 
generated a number of learnings from trialling depot charging in WS2: 

• Complexity of measuring load at some sites: While initial testing had indicated that 
the project was fully monitoring load at all sites in the trials, once the trials began it 
became apparent at one site that this was not the case, as EV charging demand was 
occasionally exceeding total site demand. Investigations on site with the load 
monitoring contractor found that the initial monitoring installation had not considered 
all transformers in the site’s complex electrical installation and some EV-related charge 
was being missed. In this particular installation it had not been possible to install 
monitoring on the main feed without powering down the site, so multiple sensors had 
to be installed on cables feeding different loads within the building and it was difficult 
to identify which cables were relevant to which loads on the site.  Further sensors were 
installed to ensure all relevant load was monitored. This incident further emphasises 
the learnings in Deliverable D3, that on older and larger sites fully measuring load can 
be a complicated and lengthy process for which sufficient time and resources needs 
to be allowed. 

• Difficulty of network side load monitoring on the LV network: The project identified 
VisNet Hub as the load monitoring system that the DNO will use to monitor compliance 
with profiled connections. This system interfaces with the ANM system and appears to 
perform well. However, it has become apparent that it is not always possible to install 
this infrastructure within the DNO estate, and that installing at customer premises can 
be complex and time consuming for the DNO. Specifically within Optimise Prime there 
have been issues with space constraints, managing asbestos, negotiating legal 
agreements and separating tasks that need to be carried out by the DNO and the 
customer’s contractors. An alternative means of monitoring compliance may be 
needed, such as requiring the customer to install a suitable system, and this will be 
considered. 

• Using RFID as a means to identify vehicles: As raised in Deliverable D3, during the 
testing phase it was found that using RFID authentication to identify which vehicles 
were charging could be unreliable, as drivers do not always ensure that they 
authenticate with the RFID assigned to their vehicle. There are a number of reasons 
for this, such as some vehicles having two RFIDs for different CPs, use of master keys 
to start multiple charge stations, and new RFIDs being supplied without the knowledge 
of the project team. This reduces the number of vehicles that can be controlled in the 
current system design. The project is now adding new RFIDs to the system when they 
are seen and is taking steps to reconcile them with vehicles. Optimise Prime will 
consider whether further action is needed to improve RFID accuracy and may change 
the rules that define what loads can be controlled to overcome this issue without 
impacting on depot operations. 
 

3.8 Next steps 
The next activities on the Royal Mail trial will focus on improving the project’s predictive 
modelling capabilities, based on analysis of the efficacy of the current models. Given the high 

https://www.optimise-prime.com/s/OP_Deliverables_D3_Ver_10.pdf
https://www.optimise-prime.com/s/OP_Deliverables_D3_Ver_10.pdf
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volume of data being collected for CP and site load, it will be important to develop forecasting 
tools to facilitate the planning of profiled connections and of bids for flexibility events. 
 
These events will be a key focus over the remainder of the trials period. Royal Mail EVs will 
participate in four periods of flexibility events of four weeks each. During these flexibility 
periods, the potential for Royal Mail EV charging load to be curtailed in response to signals 
from the DNO will be explored. 
 
Similarly, four periods of profiled connection implementation are planned, during which the 
extent to which Royal Mail EVs are able to adhere to the behaviour expected from the 
simulations will be explored. The final profiled connection period will run concurrently with a 
flexibility period, providing insight into the potential trade-offs between the two approaches. 
 
Alongside these trials, work will look at the commercial models associated with the trial 
methods, for both network customers and DNOs, and the behavioural issues associated with 
this EV transition. The first insights from this work will be presented in Deliverable D5. 
 

3.9 Changes made or planned based on initial learnings  
As the trials have progressed the project team have continued to evaluate the design of the 
trials and supporting systems in order to enhance the outcomes of the Optimise Prime Trials. 
Minor changes have been made to the trial design, other than the minor wording changes 
noted in Table 13, however there have been three further developments to the infrastructure 
used in WS2, namely: 
 
Change to the communications infrastructure for CPs at some sites 
In Deliverable D3 it was reported that an alternative communications infrastructure had been 
implemented – called Over-the-Air (OTA) – in order to add two additional electrified Royal Mail 
depots (Camden and Victoria) to the project without the need to install additional physical 
infrastructure at sites. This solution uses cellular communication via the CSMS backend 
platform to communicate with the trial systems, as shown in Figure 30, which is less intrusive 
and quicker to install than the wired solution. 
 
Testing of this system was successful, and it was found that the OTA system solved an issue 
on the wired system where the second socket on older Swarco CPs could not always be 
controlled. As a result of this, it was decided to transition all Swarco chargers to OTA control, 
while the Alfen chargers remain controlled by the original physical infrastructure. This has 
resulted in the Victoria, Camden, Bexleyheath and Orpington depots being controlled by the 
OTA solution, Dartford, Islington Premier Park and Whitechapel having CPs controlled by both 
systems and Mount Pleasant being controlled by the original wired solution. 
 
  

https://www.optimise-prime.com/s/OP_Deliverables_D3_Ver_10.pdf
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Figure 30 – Original wired and OTA charge management 

 

 
 
Improvements to Panoramic Power infrastructure 
Monitoring of the Panoramic Power (the site load monitoring solution used in the trials) 
infrastructure early in the trials identified that there were some variation in the reliability of site 
load readings. This particularly affected sites where bridges (devices that collect readings from 
individual sensors and communicate via cellular signal to the central system) were located in 
basements or equipment rooms with poor cellular coverage. Additional aerials have been 
installed at some sites and this appears to have rectified the issues. An extended period of 
monitoring is recommended to identify any potential issues with the connectivity of cellular 
devices. 
 
Requirement for tooling to assist flexibility bid creation 
Initial trials of flexibility products have shown that the calculation of the required baselines and 
offers for bids is a time-consuming process. In order to improve this process, additional tooling 
has been built by the project’s data science team in order to automate this task. The tooling 
uses past load data and set parameters in order to return predicted available flexibility and a 
price, which can then be used to submit a bid. Automating this process is important for the 
future viability of the flexibility solution, as it would not be reasonable to expect customers to 
manually construct bids based on a large amount of information.  
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4 WS3 – Learnings from the Mixed Trials 

4.1 Overview of the WS3 Trials 
WS3 is the mixed charging trial, a data analysis exercise looking at the charging patterns and 
potential network impacts of PHVs. PHVs do not have a dedicated charging infrastructure and 
may charge at drivers’ homes or at on-street or hub based public charging points. In Optimise 
Prime, journey data from EVs operating on the Uber platform in Greater London is being 
collected and analysed. This section focuses on the learnings gained from the implementation 
of the data ingestion (the process of capturing the data from a number of sources and storing 
it in a form that enables analysis), as well as from building and testing the models that are 
being used to analyse data during the trials. 
 

4.2 WS3 Trial Experiments 
 
The Uber objectives were split into nine experiments, as shown in Table 24. The core of work 
in WS3 has focussed to date on Ub_Ex_01 – estimating charging events based on trip data. 
The other experiments then utilise this data in their analysis. Where we note that an 
experiment is discussed in this report, a summary can be found in section 4.7. 
 
Table 24 – WS3 Experiments 

 

Experiment 
number 

Hypothesis Status 

Ub_Ex_01 The time, location and magnitude of electric PHVs charge 
events can be estimated from Uber trip data 

Discussed in this 
report 

Ub_Ex_02 The time, location and magnitude of electric PHVs charge 
events will be influenced by external factors such as 
weather and large public events 

Discussed in this 
report 

Ub_Ex_03 Existing EV uptake models can be improved using data on 
actual uptake of electric PHVs within the trial 

To be explored in 
deliverable D7 

Ub_Ex_04 Locations lacking adequate charging infrastructure 
(current and future) can be inferred from Uber trip data 

Discussed in this 
report 

Ub_Ex_05 Electric PHVs charging causes low magnitude, local stress 
on the distribution network at present, but will pose a more 
significant threat in the next 10 years 

Discussed in this 
report 

Ub_Ex_06 DNO costs are unlikely to be affected by electric PHV 
charging in the short term 

To be explored in 
deliverable D7 

Ub_Ex_07 Electric PHV fleet operators are unlikely to be significant 
flexibility providers 

To be explored in 
deliverable D7 

Ub_Ex_08 The value available from flexibility provision is insufficient 
to alter driver behaviour 

To be explored in 
deliverable D7 

UB_Ex_09 Charging infrastructure costs could be reduced using 
profiled connections across aggregated CPs 

To be explored in 
deliverable D7 

 

4.3 Status of the WS3 trials 
The WS3 trials began in full in August 2020. At this point, the target number of 1,000 vehicles 
required for the trials was on the road, and systems had been put in place to capture and 
analyse vehicle trip data. This was earlier than for trials WS1 and WS2, due to the greater 
availability in the market of electric passenger cars, compared to vans, and the simpler 
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technical solution needed to capture data from the vehicle journeys. Since this time, the size 
of the sample in WS3 has continued to increase, reaching 1,500 in February 2021 and now 
exceeding 4,000. Data capture in WS3 has continued beyond the originally planned one-year 
period and is expected to conclude in line with WS1 and WS2. 
 
The workstream has progressed well, with significant learnings developed over the period. In 
order to analyse the Uber trip data, and complete the project objectives, the project team has 
built and run a number of models, re-running the models as more data has become available. 
This trial methodology is explained in the next section. Most of the models required to deliver 
the trials have been completed and the remainder of the trials period is planned to be used to 
refine learnings as the EV dataset grows with more drivers switching to EV, to further extend 
learnings by extrapolating results to expected future EV populations, and to model the impact 
of this growth on DNOs. 
 
During the period the trial, and the preceding period when pre-trial activities were taking place, 
the COVID-19 pandemic, and the related restrictions on movement and activities has had an 
impact on the trials. Certain periods have been excluded from the analysis due to the 
disruption of travel caused lockdowns and the impact that would have on trip patterns. As a 
result of the global pandemic, data from March to May 2020 had to be excluded from analysis, 
and the trials had to expand considerably their use of historical data in order to minimise the 
skewing impact of the lockdown. The team have observed continued differences in trip 
patterns compared to pre-pandemic, such as considerably fewer trips to airports, resulting in 
reduced demand for some charging locations in West London.  
 

4.4 WS3 trial methodology 
 
The Uber data used in WS3 differs from WS1 and 2 in that the project only receives data on 
‘trips’ made by the vehicles, and not data on where and when the EVs charged. In order to 
calculate potential impact on the distribution network and issues with the current availability of 
charging infrastructure, it was necessary therefore to infer charging activity based on the data 
available. This section describes how the project team has developed a number of models in 
order to do this. 

 Definitions and Profiles 
 
Geographical Areas 
 
Throughout the Uber analysis, Lower Layer Super Output Area (LSOAs) are used as the 
primary means of displaying geographic information. LSOAs are geographical units with 
roughly constant populations (between 1,000 and 3,000 people) contained within them, 
defined according to the 2011 census. In London, the average LSOA is 0.2km2. Appendix 6.3 
illustrates this with the borough of Newham as an example, showing how it is segregated into 
LSOAs according to population. London Boroughs are larger areas (excluding the City of 
London, populations range from 150,000 to 400,000 people) and are used where it was not 
possible to break data down to LSOA level or where fewer, larger areas make the data easier 
to interpret. 
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Defining Uber Data 
 
The trials established defined rules to interpret the behaviour of Uber EV drivers seen through 
the trip data to ensure there could be standardised observations based on their behaviour. 
The following lists the definitions for interpreting driver behaviour: 

• Shift: A period of time where a driver is using the Uber app with breaks no longer than 
four hours each (i.e. a new shift starts after a break of more than four hours). Additionally, 
if any resulting shifts are found to be more than 15 hours, they are divided using breaks 
of at least two hours to indicate a new shift.  

• Event: A “log” in the Uber Trip dataset reflecting the vehicle status: 
o Open: A driver is logged in to the Uber app, waiting for a trip.  
o En-route: A driver has accepted a ride and is en-route to pick up a passenger.  
o On-trip: A driver is on a trip with a passenger in the back of the vehicle. “On-trip” 

events are called “trips” in this report. 
o Offline: Artificially added to the dataset by Hitachi. These events reflect moments 

where a driver is still on their shift but is not using the app. For example, the app 
might be turned off for a short break. 

o Off-shift: Artificially added to the dataset by Hitachi. These events reflect times 
where the driver is not on a shift. For example, they might have gone home for the 
evening.  

 
Classifying Trip and Vehicle Profiles 
 
The trials classified trip and vehicles profiles to analyse any relationships between vehicle type 
and the type of trips undertaken by Uber EV drivers. Vehicle profiles were organised according 
to the range of the vehicle, which is displayed in Table 25 for the May-July 2021 period. 
 
Table 25 – Vehicle profiles and the range brackets used to categorise them  

 

Vehicle 
profile 

Definition Range (km) Example vehicle % of sample 

Low Range more than 1/6 
lower than the median 
range 

174-306 Nissan Leaf 45.8% 

Medium Range between 1/6 
lower and 1/6 higher 
than the median 

344-473 Volkswagen ID3 53.5% 

High Range more than 1/6 
higher than the 
median 

499-560 Tesla Model 3 
Long Range 

0.7% 

 
Three trip profiles were classified according to the geographical characteristic of the end 
location: Inner city, Outer City, and Airport trips, with the following definitions:  

• Inner City: Camden, City of London, Hackney, Hammersmith and Fulham, Haringey, 

Islington, Kensington and Chelsea, Lambeth, Lewisham, Newham, Southwark, Tower 

Hamlets, Wandsworth and Westminster. 

• Outer City: all other London boroughs. 

• Airports: City, Gatwick, Heathrow, Luton, Stansted and Southend. 
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 Inferring charging behaviour of Uber drivers  
As the project does not know when Uber drivers charge, this has to be inferred from the 
distance they travel, gaps between journeys and a model of where charge points are located. 
Due to the scale of the analysis, involving many thousands of journeys, it is not possible to 
verify how close to reality these inferences are, however Uber drivers are taking part in a 
series of surveys looking at their views and behaviours regarding EVs and charging. The first 
results of this work will be presented in Deliverable D5. 

4.4.2.1 On-shift charging: should, could, did charge 

On-shift charging events occur during gaps between trips and other events (see Figure 31). 
 
Figure 31 – Stages of Uber EV activity throughout the day, with A and B denoting when charge 
events could take place 

 

 
 
In the absence of direct data on vehicle SoC, the trials developed a methodology to infer if a 
charge event occurred on-shift by evaluating if they:  

• Should have charged 

• Could have charged 

• And therefore did charge.  

4.4.2.1.1 Should charge 

To assess if a driver should charge, the trials used a probabilistic model based on their inferred 

SoC and the relative demand in their borough during their shift. If the inferred SoC was low, 

this was assumed to result in high range anxiety for the driver and therefore high probability 

they should charge and vice versa.  

  
According to the model’s assumptions on those two criteria, an ‘S’ value would be produced 
for each driver which denoted the extent to which they should charge (for a breakdown of how 
this was done see Appendix 6.4).  
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4.4.2.1.2 Could charge 

Then, the trials would evaluate whether or not a driver could have charged. This was a 
deterministic {True, False} based on whether it was possible to drive along the road network 
using the shortest path (at the average road network speed) to the CP that would have given 
them the most charge in the time available on a chain of offline or open events, before 
returning to the next event in the Uber trip data.  To discern this, the trials would check for 
each “open/offline event chain” (Figure 31). 

4.4.2.1.3 Did charge 

Following that, the Trials assigned probability scores, for whether or not the driver did charge, 
the D value. This was determined based on whether or not they should have charged and 
could have charged (the approach to this can be found in Appendix 6.5).  

4.4.2.1.4 Summary of the approach 

In summary, the following three concepts allowed the inference of whether a driver did charge:  
a) The likelihood that they should charge. 
b) Whether they could have realistically reached a CP.  
c) The amount of charge they would have received from the CP.  

 
Figure 32 visualises this. 
 
Figure 32 – Overview of the should, could and did charge methodology to infer charging events 
in the absence of direct data 

 

 

4.4.2.2 Inferring charging behaviour of Uber Drivers: Off-shift charging 

Off-shift charge events were viewed to be instances where drivers were charging at the end 
of their shift, and this charge event did not precede another trip for at least four hours until a 
new shift was viewed to have commenced.  
 
To infer off-shift charge events, the trials had to allocate vehicle ‘home’ locations at LSOA 
level for each driver. The ‘home’ locations were inferred from the frequency and distance of 
the LSOA at the start and end of driver shifts. For each vehicle, the trials attempted to find an 
LSOA that most frequently appeared in pairs as both the start and end LSOA for a driver’s 
shift. These ‘home’ locations could be either boroughs or LSOAs. More detail on this can be 
found in Appendix 6.6.  
 
Since the time available to charge between shifts is much longer than for on-shift charging, 
the number of options for charging greatly increases; any public CP would be capable of 
delivering enough charge before the next shift began in most cases.  
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Having identified a ‘home’ location, drivers were assigned private charging status according 
to the availability of off-street parking in the borough. This was initially conducted using 
borough-level data from Transport for London (TfL) (Appendix 6.7), but on review it was 
considered that the variability of parking availability in boroughs was too high, so would not 
necessarily reflect the areas where Uber drivers lived. A study conducted by Field Dynamics 
(see Appendix 6.8) was identified that provided off street parking at LSOA level, so this data 
was used assign charging status. For the drivers assumed not to have access to off-street 
parking and therefore a private CP, Zap Map data was used to identify the most suitable public 
CP.  
  
For those assigned to private CPs, the distance between the last status location to the centre 
of the ‘home’ LSOA was calculated and then the corresponding energy use to reach that 
location was deducted from the vehicle SoC. The driver would then be assumed to charge at 
7 kW until the battery was full, or the next shift started.  
 
Drivers deemed to be without private CPs would be assumed to select the lowest rated CP 
closest to the centre of the ‘home’ LSOA that could provide sufficient charge before the next 
shift. As was the case in analysing drivers with private CPs, the distance between the last 
status location and the CP was calculated, and the energy usage to reach it deduced. The 
driver was then assumed to charge at the CP rating until the vehicle reached 80% SoC (see 
Figure 33).  
 
Figure 33 – How off-shift charging events were inferred 

 

 
 
For both on and off-shift charge events, all inferences abided by a comprehensive list of 
business assumptions. They were as follows: 

• The possibility of queueing to wait for an available CP was not considered 
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• Drivers were assumed to be rational and would therefore seek to gain the most charge 
possible in an event, assuming that they wanted to maximise their time on shift 
accepting Uber trips 

• All drivers were therefore assumed to have ‘perfect’ information’ about public CPs 

• All CPs were assumed to be operational 

• The monetary cost of charging was not considered, with the exception of the exclusion 
of some high-cost locations noted below 

• Drivers were not modelled to be preferentially choosing specific CPs , for example due 
to personal preference, subscription services, or any other preference 

• Concurrency of charging events was not considered. As a consequence, it was 
possible for a CPs to be over-utilised at certain times due to more drivers being 
assigned to it than there were available concurrent connections. 

 
There was also a list of CP assumptions which shaped inferences on Uber EV charge events:  

• The analysis conducted aggregated to a CP location level, rather than a specific CP 
level. 

• All public CPs that were used were not restricted to the public nor reserved for certain 
vehicles, such as black cab taxis. 

• CPs labelled “Workplace car park” were excluded from the analysis, following the 
assumption that these would be inaccessible for Uber drivers. 

o There was one exemption: a Tesla Supercharger location at the Royal Victoria 
Docks, since it is accessible 24/7 to the public. 

• Certain vehicle brands were modelled to have access to certain, distinct locations: 
o Tesla EVs could access any Tesla location, and only Tesla EVs could access 

Tesla Supercharger locations. Additionally, Tesla EVs could benefit from the 
advanced speeds of Tesla Superchargers (120 kW not 100 kW), and Tesla 
Destinations (22 kW not 7 kW) 

o Vehicles could use dealership forecourt chargers, but only for dealerships of 
that vehicle make. 

• CPs on Hotel/Accommodation or NHS property were included 

• Q Parks were excluded from this analysis, due to their relatively prohibitively high cost 
of charging 

o Q Park on Park Lane was not excluded since from 14 October 2020 Uber had 
arranged for Uber drivers to have access to it. 

• The charging speeds for the four CP types were as follows: 
o Slow = 3 kW 
o Fast = 7 kW 
o Rapid = 50 kW (DC) 
o Ultra-Rapid = 50 kW – except for Tesla EVs which charged at 100 kW, and 120 

kW at Tesla Superchargers. 
▪ Since many EVs have limits on the power they can accept while 

charging, all vehicles using Ultra-rapids other than Teslas were capped 
at 50 kW. 

• For off-shift charging, all private CPs were modelled to be 7 kW. All other assumptions 
for on-shift CP usage applied for off-shift. 

4.4.2.3 Network Capacity  

Varying levels of network capacity across London were calculated in order to discern where 
there was available capacity to further expand charging infrastructure, and where there were 
particular areas of network constraint.  
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To construct these visualisations, residual capacity was calculated for each LSOA by taking 
the maximum historical demand at the substation within the LSOA which had the highest 
‘headroom’ between its maximum historical load and its rated capacity. Then, by applying the 
estimated kVA demand from inferred charge events, a ‘worst case scenario’ for residual 
capacity could be found and mapped-out for each LSOA. Since the exact time when 
substation’s recorded historical maximum load occurred could not be pinpointed, the following 
assumptions were made: 

- The trials assumed a worst-case scenario where the historical maximum coincided 
with the maximum half-hourly window for charging demand and all relevant EVs are 
charging concurrently 

- All the charging events were assigned to the substation with the maximum headroom 
within the LSOA 

- The historical maximum did not include these CP being active at the time 
- LSOAs without headroom data are ignored 
- The charging demand data is the maximum demand per LSOA  

 

4.5 Data gathered 
The WS3 trials utilise a number of different datasets in order to analyse the charging behaviour 
of the electric PHVs. The core data sets are sourced from Uber’s platform and details the 
journeys taken by EVs in the Greater London area. This data is compiled monthly by Uber, 
anonymised and shared with Hitachi for analysis. When new vehicles are detected in the 
dataset, they are validated to ensure that each vehicle in the dataset is an EV.  
 
In order to map demand against the constraints of the distribution network, datasets are 
captured from UK Power Networks and SSEN detailing the capacity and maximum observed 
demand at each of their substations in the study area. These files are updated quarterly, and 
substations where the capacity is reserved for a specific customer (and therefore will not be 
made available for charging) are excluded. 
 
A number of commercial datasets are also used as part of the analysis. Principle among these 
is charge point location data, used to determine the locations where Uber electric PHVs can 
charge and at what speed. This data is licensed from Zap-Map and sourced periodically from 
their API. Weather, parking and geographic datasets are also used, as detailed in Table 26.      
 
Table 26 – Datasets used in WS3 

 

Data Name Description Use in Trial Source 

Uber EV Trip 
Data 

Anonymised data for all 
EV trips taken in 
Central London, 
including trip status, 
start/end location and 
time, and vehicle 
make/model.  

Used to understand driver 
behaviour, particularly in 
discovering where drivers SoC 
would be low and would require 
them to seek a CP. 

Uber 

Uber EV 
Vehicle Data 

Details of which 
manufacturer and 
model EVs are used for 
which trip. 

Facilitated analysis of trends of 
trip-type according to vehicle 
type. 

Uber 
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Data Name Description Use in Trial Source 

EV Vehicle 
Range Data 

Distances each EV 
make and model could 
travel before having to 
recharge 

Enabled inferences on when and 
where Uber EV drivers would 
need to charge based on the 
distances they had driven since 
last recharging.  
Facilitated tracking of Uber EV 
vehicle range growth over time. 

Multiple, 
publicly 
available third 
party sources.  
Worldwide 
Harmonised 
Light Vehicle 
Test Procedure 
used where 
available.  

CP data Comprehensive and 
accurate list of all 
publicly available EV 
CPs in London. 

Used to support inferences of 
charge events by displaying 
where CPs are in relation to 
driver movements. Also enabled 
analysis of CP availability and 
proliferation across London. 

Zap Map 

DNO 
Substation 
Data 

Low voltage (LV) 
substation location, 
rated capacity and 
historical maximum 
utilisation for London-
based substations 
operated by UK Power 
Networks and SSEN. 

Enabled analysis of the electricity 
network and its varying levels of 
capacity across London to satisfy 
Uber EV charging demand. 

UK Power 
Networks 
 
SSEN 

Weather Data Detailed meteorological 
data, comprising: UV 
Index, Apparent 
Temperature, Humidity, 
Wind Speed and 
Precipitation Intensity, 
from November 2019 to 
June 2021. 

Enabled comparisons between 
the impact of weather and the 
impact of time of day/year in 
influencing Uber EV trip demand 
and Uber EV battery SoC 

Dark Sky 

Area 
Segregation 
Data 

Shapefiles of London 
Boroughs, middle Layer 
and Lower Layer Super 
Output Areas (MSOAs 
and LSOAs) 

Enabled the clear separation of 
geographical areas of varying 
sizes. 

UK Government 
Data 

Off Street 
Parking Data 

Per borough and per 
LSOA analysis of the 
proportion of homes 
with off-street parking 

Enabled assumptions to be made 
with regards to the number of 
EVs using public infrastructure to 
charge 

TfL, Field 
Dynamics 

 

4.6 Analysis 
 
This report summarises findings taken from data collected between November 2019 and April 
2021, focusing on two primary phases of investigation: Phase 1 consisted of analysing Uber 
EV charging demand, and Phase 2 focused on understanding the impact of Uber EV charging 
demand on the low-voltage electricity network. Both phases involved varied experiments and 
streams of analysis. 
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In order to build a thorough understanding of Uber EV charging behaviour, Phase 1 included 
analysis on a number of data streams: 

• Analysis was conducted on whether the types of trips drivers were fulfilling varied 
according to the type of EV they used  

• Both on-shift and off-shift charging behaviours were investigated to identify where, 
when and how Uber drivers were recharging their vehicles 

• The trials also examined patterns of CP utilisation across London, discovering where 
certain locations were experiencing burgeoning demand and, therefore, where 
infrastructural upgrades might be most valuable for drivers 

• Across the data period, the trials tracked the impact of weather on battery use 
compared with time variables 

• The growth of average vehicle range for Uber EVs and proliferation of the public CP 
network in London were also monitored.  

 
In parallel, Phase 2 explored how Uber EV charging demand was impacting the electricity 
network in London: 

• The trials consistently mapped the locations where there was ample network capacity 
to support an upgrade in the local charging infrastructure against the locations with the 
least capacity to absorb future demand 

• This research manifested in regularly updated Red Amber Green (RAG) maps, as well 
as lists detailing the number of CPs that over-utilised locations could support to cope 
with aggregated demand there. This considered both on-shift and off-shift charging 

• Finally, the general peak electricity load caused by Uber EV charging was tracked 
throughout the research period.     

 Phase 1 
 
The Uber EV driver population was categorised into three groups according to vehicle range. 
Table 25 details the three groups and the range brackets used to segregate them. Early in the 
trial the low range bracket was dominant, with the majority of vehicles being Nissan Leafs, 
However, over time the average range has increased as Uber drivers have adopted new EVs 
with longer ranges. 
 
The driver population was organised further according to their charging behaviour, for which 
there were two categories: on-shift charging and off-shift charging. On-shift charging was far 
less common compared to off-shift and this was consistent over the research period, although 
it did fluctuate slightly. The average percentage of those charging on-shift at the beginning of 
this period was 20.1% in June 2020, compared with 21% in June 2021, with it peaking at 24% 
in September 2020.  
 
Those drivers that charge on-shift were least likely to charge in the early morning and in the 
morning rush hour period, from 04:00 to 09:00. Generally, as the vehicle SoC decreased, the 
probability of a driver requiring a charge increased, causing their calculated S value (the extent 
to which they should charge according to the conditions described above) to rise. However, 
there were also dips in the D value for Uber EV drivers (the extent to which the models 
assessed them as actually going to charge) during the evening. Reductions in the likelihood 
of Uber drivers charging during this rush hour period was most likely owing to high local trip 
demand encouraging drivers to keep accepting trips, deferring charging. Peak charging 
probability occurs late at night as SoC decreases and gaps between journeys are longer, 
making charging both feasible and more necessary (Figure 34).  
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Figure 34 – Visualisation of the probability that drivers should and did charge while on-shift 
over the course of a week. Based on data from November 2019 to February 2020 

 

 
 
This trend remained largely consistent throughout the research period, however there were 
occasional minor changes. For example, from June to August 2020 Uber drivers exhibited 
more ‘opportunistic’ charging in the daytime throughout the working week, perhaps owing to 
a reduction in business travel demand releasing more time in the day for drivers to recharge. 
This is illustrated in Figure 35 where the afternoon periods saw much higher D values 
compared with what was seen from November 2019 to February 2020. On weekends, the D 
values rose in accordance with the later in the day it got. 

 
Figure 35 – Visualisation of the probability that drivers should and did charge over the course 
of a week, based on data taken from June to August 2020 

 

 
 
The Trials also distinguished differences in driver behaviour according to the vehicle they 
drove (see Table 25 for the vehicle type classes). Low and medium range vehicles seemed to 
fulfil very similar trip profiles. The only divergence between these two groups was low range 
vehicles were less likely to do airport runs, which was taken to be a symptom of range anxiety 
and low confidence in ability to top up charge near to the airports. High range vehicles were 
slightly less likely to operate at weekends (Figure 36), perhaps due to an increased likelihood 
of operating as part of Uber Exec or Lux categories and therefore serving a more business 
ridership.  
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Figure 36 – Uber EV trip activity according to vehicle range profile, based on data taken from 
May to July 2021 

 

4.6.1.1 Understanding Charging Behaviour: On-shift charging  

 
The trials sought to understand the charging patterns of Uber EV drivers, comprising the 
locations they charged at, the distances they travelled in order to charge, when they went to 
charge and the type of CP they then used. As detailed above, analysis on this was derived 
from the should, could and therefore did’ charge logic. 
 
So far, Optimise Prime has found that Uber EV demand for on-shift charging is most intense 
in Central London, particularly in the City of London and City of Westminster. Yet, both of 
these areas were two of the most under-served regions for Rapid and Ultra-rapid charging 
infrastructure. Drivers charging on-shift were generally forced to use Rapid and Ultrarapid 
CPs, since the time they had between trips was much shorter than if they were charging at 
the end or before their shift. This narrows their choices considerably, which was seen 
particularly in the early period of the research when there were very few CPs in Central London 
that were capable of delivering sufficient power in the small window they have to recharge. 
Not only did this force them to travel long distances to secure a charge, but the few Rapid and 
Ultrarapid CPs were operating beyond their capacity at times to support the burgeoning Uber 
EV demand in the central boroughs of the city.  
 
In the early stages of the research, a charging hotspot also existed near Heathrow in the West 
owing to high airport trip demand (Figure 37). However, as the year progressed, this became 
less pronounced as demand aggregated even more around Central London. This is likely as 
a result of the reduction in air travel caused by the COVID-19 pandemic. By the end of the 
research period, a dominant proportion of the Top 10 most-utilised CPs in London were 
concentrated in the central regions of the city (Figure 38 and Table 27). 
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Figure 37 – Heatmap visualising the average D value – the probability that a driver did go to 
charge – for on-shift charging in LSOAs that accommodated more than 600 charge events. 
Data taken from November 2019 to February 2020 
 

 
© kepler.gl © Mapbox © OpenStreetMap Improve this map 

 
Figure 38 – Heatmap visualising the number of charge events that occurred in each LSOA, with 
yellow bolts representing the location of Rapid and Ultra-rapid CPs, and red bolts indicating the 
Top 10 most-utilised CPs in the city. Data taken from February to April 2021 
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Table 27 – The Top 10 most-utilised CPs. These locations are placed as the Red bolts in Figure 
38. Data taken from February to April 2021 

 
Chargepoint 

LSOA 
LSOA 

description 
Total 

Number of 
charge 

events in 
the LSOA 

Average 
charge 

events per 
day 

Other rapid/ 
ultrarapid 
chargers 

within 1 km 
radius 

Camden 021B Euston Osnaburgh 2,418 27.2 0 

Southwark 002B 
Borough Market / 
Southwark Street 

2,023 22.7 0 

Tower Hamlets 
015D 

Spitalfields 1,573 17.7 0 

Westminster 
019C 

Park Lane 1,409 15.8 0 

Lambeth 003A Oval 1,305 14.7 2 

Kensington and 
Chelsea 012C 

Sloane Square 1,228 13.8 0 

Westminster 
015B 

Lancaster Gate 1,206 13.6 0 

Westminster 
014F 

Westbourne Park 1,097 12.3 1 

Westminster 
009A 

Marylebone 905 10.2 0 

Tower Hamlets 
033A 

Canary Wharf 904 10.2 12 

4.6.1.2 Understanding charging behaviour: off-shift  

Off-shift charging was analysed for the first time from June to October 2020. Off-shift charging 
was far more dispersed across London as off-shift charging drivers were assumed to charge 
near their homes (Figure 39) While on-shift charging was characterised by an intense 
concentration of demand on Rapid and Ultrarapid CPs in Central London, off-shift charging 
was multi-faceted as drivers utilised a range of Slow, Fast and Rapid CPs, as well as a mixture 
of both public and off-street, private charging infrastructure.  
 
The trials found that Barnet was the LSOA supporting the most Uber EV off-shift charging 
demand, and it has remained the top borough throughout the research (Table 28). In the 
period between February to April 2021, Barnet experienced 8,314 charge events with more 
than 3,000 of them being at slow or fast public CPs. Fewer than 400 charge events were from 
a Rapid CP. It was found that the peak in off-shift charging occurred at 8pm and this would 
remain largely consistent across the entire data collection period.  
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Figure 39 – A CP distribution map across London boroughs for off-shift charge events, based 
on data taken from June to October 2020 

 

 
 
Table 28 – Top 3 London boroughs for Uber EV off-shift charging, based on data from June to 
October 2020 

 
Ranking 
of 
borough 
by 
number of 
off-shift 
charge 
events 

Home 
borough 
(regardless 
where 
charging 
happens) 

Sum of all 
off-shift 
charging 
events by 
vehicles 
based in 
borough 

Public charging events 
by CP type 
 

Home 
charging 
events 
in borough 
 

Borough 
average 
off-street 
parking 
access 
(%) 

Slow Fast Rapid 

1 Barnet 8,314 30% 7% 5% 59% 59% 

2 Croydon 5,512 28% 12% 11% 49% 55% 

3 Ealing 5,284 19% 11% 6% 64% 56% 

 
Overall, off-shift charging drivers without home charging access were primarily estimated to 
be using slow, public CPs. The trials observed most vehicles’ SoC were greater than 50% 
when they concluded their shift and started their trip to a CP. This, coupled with the fact off-
shift charging drivers could benefit from a longer charging window, makes it far more feasible 
to use Slow and Fast chargers. Consequently, proximity to a CP was far less of a concern for 
those charging off-shift, and they could capitalise on far more options for where to charge. 
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4.6.1.3 Excess demand at London CPs 

A key finding of analysis on charging behaviour was there are not enough Rapid or Ultrarapid 
CPs in London to support the demand of Uber drivers charging on-shift. They may have to 
travel far to reach the optimally located CP and the modelling predicts that a number of the 
most popular CPs have a demand in excess of supply at peak times. An expected result of 
this is drivers would be forced to queue in order to charge, or not use the optimum CP.  
 
This demand and supply imbalance was most intense in Central London, particularly in 
Westminster and City of London. The maximum and average utilisation rates for Osnaburgh 
Street and Park Lane exemplify this (Figure 40). Osnaburgh Street, situated in Camden, was 
the CP with the highest demand throughout the entire year and peak demand reached almost 
300% of its capacity. Demand at the Westminster Park Lane site exceeded 150% of maximum 
capacity.  
 
Figure 40 – Maximum and average demand/utilisation rates at two of the most popular CPs in 
London for Uber EV drivers, based on data from February to April 2021 

 

 
 

It was evident that high charging demand was occurring in areas that contained relatively 
few Rapid and Ultra-rapid CPs. The trials consistently proposed City of London and City of 
Westminster to be the most suitable areas to upgrade the existing charging infrastructure. 

Throughout the research period, Westminster did benefit from a number of new CP 
installations that soaked up a lot of charging demand. Chargers at Westminster Park Lane, 
Lancaster Gate, Westbourne Park and Marylebone have been installed as the trials have 

progressed and now represent nearly half of the top 10 most-utilised CPs in the city ( 
Table 27).  
 
The Park Lane location (which is operated by BP Pulse, with specific chargers reserved for 
Uber drivers) became available to Uber drivers from October 2020, and accommodated 926 
charge events between November 2020 and January 2021. The other three additions, all 
public chargers, were installed and available from December 2020 or January 2021. There 
were 3,208 charge events in the LSOAs in which they were located from February to April 
2021, indicating they were well-placed to cater for on-shift Uber EV charging demand.  Having 
advocated for greater investment in Westminster, the significant success of these Westminster 
based Rapid/Ultrarapid CPs validated the analysis being conducted by the Optimise Prime 
team. As a result of these new CPs, the modelled over-utilisation at some existing CPs has 
reduced, though this has been tempered by the overall growth in EV charging demand. 
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Another result of the lack of sufficient charging infrastructure in Central London was that 
drivers were travelling significant distances – more than 4 km – to secure a charge. This was 
the case across the city, but the centrally located Rapid and Ultrarapid CPs were especially 
absorbing demand from distant areas across expansive catchment areas. The Shell Recharge 
location in Whitechapel, which was consistently amongst the Top 10 most-utilised CPs 
throughout the year, supported a vast catchment area. Positioned further to the East of 
London, its catchment area sprawled across to the boundaries of the city in the East while still 
accommodating significant charging demand from the centre (Figure 41). 
 
Figure 41 – Catchment area for the CP at Shell Recharge in Whitechapel, February-April 2021 
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The catchment area for Osnaburgh Street CP was another good example of this (Figure 42) 
It was capturing both concentrated demand from inner London boroughs, as well as disparate 
demand from outer regions of the city.  
 
Figure 42 – Catchment area map for the CP at Osnaburgh Street, February-April 2021 
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The Westminster Park Lane location was also accommodating sporadic demand from a 
significant distance away, as shown in Figure 43. Though centrally located, the average 
distance travelled to reach the Park Lane site was 4.7km. LSOAs within Westminster borough 
made up six of the 10 LSOAs where drivers most frequently had to travel out of in order to 
charge (according to data taken from February to April 2021).  
 
Figure 43 – Chart visualising Uber EV driver movement towards CPs from the location in which 
it was inferred they would need to go to charge. The yellow box labels the Westminster Park 
Lane CP. 
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In the arc, thickness is proportional to the number of trips, for which yellow indicates the source and red the 

destination. The height for each block represents the total number of charge events in that CP LSOA.   
 
The trials established a connection between the LSOAs where drivers most frequently had to 
travel out from in order to reach a CP, and the LSOAs from which drivers had to drive the 
furthest in order to charge. Table 29, using data from before the COVID-19 lockdowns 
demonstrate this link by colour coding the LSOAs that were forcing drivers to both to travel 
the furthest (in the left table), and most often (in the right table) beyond their limits, to secure 
a recharge. A more recent analysis from 2021 can be found in Appendix 6.10, showing that a 
similar pattern continues to exist, albeit with a reduction in frequency of events on the 
Heathrow Airport corridor and a greater proportion of events in and around central London. 
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Table 29 - The LSOAs which drivers had to travel the furthest from in order to reach a CP (left 
table) and where drivers most frequently had to travel to other LSOAs in order to reach a CP 
(right table) (November 2019 to February 2020) 

 
Data on all of the LSOAs where drivers were having to travel over 4 km to recharge their 
vehicle has been mapped (Figure 44). Imitating the London skyline, the high LSOA blocks in 
Central London show the high propensity for long journeys to CPs there, with the large LSOA 
to the west depicting Uber EV drivers travelling long distances from Heathrow. Visualising this 
gave clear insight into the areas where investment could mitigate these long and inefficient 
journeys that Uber EV drivers were commonly having to make.  
 
Figure 44 – The LSOAs where Uber EV drivers are driving more than 4km to reach a CP, with 
height of the LSOA block representing the volume of drivers being affected. Data taken from 
February to April 2021 
 

 
© kepler.gl © Mapbox © OpenStreetMap Improve this map 

Starting LSOA LSOA 
Description 

Total no. of 
charge 
events from 
LSOA* 

Average 
distance 
to CP 
(km) 

Hillingdon 
031A 

Heathrow 
Airport 

324 10.46 

Hounslow 010D Hounslow N 
Henlys Rbout 

71 8.64 

Hillingdon 
031C 

Harlington 
Sipson Road 

45 6.48 

Newham 013G Stratford Stn & 
Westfield 

55 6.01 

Hammersmith 
& Fulham 004A 

Shep. Bush 
Westfield 

70 5.95 

Westminster 
011B 

Portman Sq/  
M’bone Ln 

64 5.45 

Westminster 
008D 

Regents’ Park 
West 

31 5.42 

Westminster 
015G 

Paddington 
Praed St 

55 5.36 

Westminster 
018A 

Leicester 
Square 

49 5.32 

City of London 
001F 

City 137 5.30 

Starting LSOA LSOA 
Description 

Total no. of 
charge 
events from 
LSOA* 

Average 
distance 
to CP 
(km) 

Hillingdon 031A Heathrow 
Airport 

324 10.46 

Hammersmith & 
Fulham 013E 

Hammersmith 
S. of flyover 

151 4.61 

City of London 
001F 

City 137 5.30 

Westminster 
018D 

Central/South 
Mayfair 

103 5.23 

Hackney  
027G 

Shoreditch 99 4.34 

Westminster 
018C 

St James & 
Whitehall 

89 4.41 

Westminster 
013E 

Regent Street 79 4.37 

Hounslow 010D Hounslow N 
Henlys Rbout 

71 8.64 

Hammersmith & 
Fulham 004A 

Shep. Bush 
Westfield 

70 5.95 

Westminster 
013B 

East Soho & 
Fitzrovia 

68 4.80 

https://kepler.gl/policy/
https://www.mapbox.com/about/maps/
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For the drivers using public CPs, there were more options available than for on-shift charging 
drivers. The longer window available until their next trip meant that they were not reliant on 
using rarer Rapid and Ultrarapid CPs in order to quickly boost their SoC. Within this longer 
timeframe, they could comfortably recharge before beginning their next shift, and so they could 
choose the most convenient location even if it was a Slow or Fast charger.  These two effects 
resulted in the number of vehicles travelling significant distances to reach a CP being relatively 
low. Figure 45 shows distances travelled; the median distance travelled for off-shift charging 
was 0.6 km. 
 
Figure 45 – Distances driven by Uber EV drivers to secure an off-shift charge, based on data 
taken from February to April 2021 

 

 

4.6.1.4 Impact of weather and time 

Sensitivity analysis was carried out in order to observe the impact of various weather 
conditions and time/seasonality on the modelled charging load from Uber EVs. Charging 
events appear to be consistent irrespective of weather conditions. The trials observed that 
productivity (a measure of how busy each vehicle was during a shift) remained relatively 
consistent across the year, with a clear pattern across days and weeks, as shown in Figure 
46. Some seasonal variability can be seen, however this is relatively minor.  
 
Figure 46 – Vehicle productivity compared against time of the year 
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4.6.1.5 London CP proliferation and vehicle range growth 

 
Tracking utilisation rates across the CPs in London, an uptake-delay was observed between 
installation and operation of a new CP, compared to when drivers started to use it. Three new 
CPs were installed in Westminster between December 2020 and January 2021, situated on 
Brook Street, Westbourne Park Road and Rossmore Road. These locations then supported 
3,208 charge events from February to April 2021 and were placed in the Top 10 most-used 
CPs by June, but the uptake by Uber drivers was moderately slow shown by a month delay. 
It was suggested this could be owning to slow proliferation of knowledge of the new CPs, or 
inelastic driver behaviour.    
   
Over the course of the research period, the average vehicle range for Uber EVs grew from 
just over 225 km in January 2019 to nearly 350 km in June 2021 (Figure 47). This is most 
likely due to new vehicles becoming available to Uber drivers, and it is likely to continue. This 
may have an influence on charging behaviour and on the distribution network, since longer 
range vehicles may need to charge less frequently, but when they do, they will require more 
power in order to reach a full SoC.  
 
Figure 47 – Uber EV vehicle range growth throughout the research period to date 

 

 
 
The charging infrastructure available for use in London has grown significantly too, and it 
appears to be accelerating. As shown in Figure 48, there are now 132% more Rapid chargers 
now compared with in January 2019, 177% more Rapid and Ultra-rapid chargers, and 229% 
more across all four charger types.  
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Figure 48 – Growth of number of CPs installed in London 

 

 
Yet, while overall the charging infrastructure in London is growing, installations of Slow and 
Fast charging stations continue to dominate this growth. Rapid CPs appear to be installed in 
consistent but low numbers, whereas Ultra-rapid CPs are both installed intermittently and in 
relatively low numbers, except for in December 2020 which saw a considerable number of 
new CPs fitted (Figure 49). The slow chargers are predominantly those installed in lampposts 
in residential areas. 
 
Figure 49 – CP installations in London. Dates coloured red indicate it coinciding with a COVID-
19 related lockdown in the UK 
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 Phase 2 

4.6.2.1 Impact of Uber EV charging on the grid  

 
In parallel to the evaluation of Uber EV drivers’ charging behaviour, the trials analysed the 
impact this charging demand was having on the grid. The key learning of this was there 
appeared to be sufficient network capacity to support additional charging infrastructure to meet 
Uber EV demand in Central London. The trials regularly produced Red-Amber-Green (RAG) 
maps which illustrated LSOAs across London and their respective headroom. 
 
To construct these visualisations, residual capacity was calculated for each LSOA by taking 
the maximum historical demand at the substation which had the highest headroom. Then, by 
applying the estimated power demand from inferred charge events, a ‘worst case scenario’ for 
residual capacity could be found and mapped-out for each LSOAs most-constrained 
substation. This yielded two polarised outputs: the 10 substations with the least residual 
capacity could be found and tracked over the research period, while also it allowed estimation 
of the well-placed locations where new charging infrastructure for Uber EVs could benefit from 
ample headroom.  
 
As Figure 50 depicts, areas in central London in particular may benefit from high degrees of 
spare capacity, as shown by the deep and largely uninterrupted green at the core of the map. 
This headroom could be utilised to support new CP installations to deliver Rapid and Ultrarapid 
charges to on-shift charging Uber EV drivers, who were identified as charging in that area 
predominantly.  

 
Figure 50 – RAG map illustrating headroom capacity across London LSOAs, based on data 
taken from February to April 2021. 

 

 
© kepler.gl © Mapbox © OpenStreetMap Improve this map 

The scale shows the available capacity of the substation with the most headroom in the LSOA less the total 
charge (kVA) of the highest number of charge events in a 30-minute window. The red areas show the areas with 
the least (or negative) available capacity. 
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In contrast, though the regions of network constraint – signified by the red colouring – were 
spread intermittently across the city, they are prominent in the outer boroughs. Network 
reinforcement may be needed in order to enable new CP installations in these locations. 
Importantly, these outer boroughs are where off-shift charging Uber drivers – who make up 
the majority of Uber EV drivers – go to charge at the end of their shift. Boroughs like 
Croydon, Barnet, Enfield, Lambeth, are all amongst the most common ‘home’ locations for 
Uber EV drivers ( 
Table 30) and all contain some of the most constrained substations in the city (Table 31).   
 
Table 30 – Most common boroughs for off-shift charging, as of June 2021, with breakdown of 
predicted CP type used 

 
Ranking of 
borough by 
number of off-
shift charge 
events 

Home borough 
(regardless 
where charging 
happens) 

Public charging events by CP type, as % of all 
events 
 

Home charging 
events as % of 
all events 
 Slow Fast Rapid 

1 Barnet 30% 7% 5% 59% 

2 Croydon 28% 12% 11% 49% 

3 Ealing 19% 11% 6% 64% 

4 Brent 37% 16% 3% 44% 

5 Lambeth 69% 1% 5% 26% 

6 Hounslow 43% 7% 1% 50% 

7 Enfield 27% 13% 8% 53% 

8 Southwark 81% 3% 5% 12% 

9 Newham 43% 23% 7% 27% 

10 Wandsworth 73% 3% 2% 22% 

11 Merton 22% 16% 3% 59% 

12 Greenwich 50% 7% 2% 40% 

13 Tower Hamlets 90% 4% 0% 6% 

 
Table 31 – LSOAs where substations have the least available capacity for charging, as of June 
2021 

 
CP LSOA Predicted peak load from 

current Uber EV charging (kVA) 
Times of predicted peak 
demand 

Croydon 004A 114 15:30:00       Friday 

Enfield 033B 170 17:00:00      Tuesday 

Greenwich 019D 106 17:30:00      Tuesday 

Enfield 020A 100 15:00:00      Thursday 
12:00:00      Friday 

Hackney 029B 100 10:30:00      Monday 
14:30:00      Monday 
18:30:00      Tuesday 
20:00:00      Wednesday 
13:30:00      Friday 
11:00:00      Saturday 

Barnet 023A 53 18:00:00      Friday 
18:30:00      Friday 

Camden 015C 53 17:30:00      Thursday 

Haringey 029C 53 12:00:00      Sunday 

Lambeth 007E 50 16:30:00      Thursday 

Richmond upon 
Thames 006B 

50 14:00:00      Friday 
14:30:00      Friday 

 
The trials consolidated this data and identified the number of additional CPs that could be 
immediately accommodated by substations in the three LSOAs which were most deprived of 
sufficient charging infrastructure (Table 32). Hillingdon, which serves demand from drivers 
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completing trips to and from Heathrow Airport, could support 12 new Rapid CPs. Westminster 
could also support an additional 12 Rapid CPs, whereas City of London, the other area 
continuously identified as lacking in sufficient charging infrastructure, could accommodate up 
to 41 new Rapid CPs. Barnet and Croydon, the boroughs hosting the most ‘home’ Uber EV 
drivers, could each accommodate 2-14 Rapid CPs.  In all cases, there was sufficient electrical 
supply capacity to provide enough CPs to satisfy current Uber EV demand in the region. 
Appendix 6.8 maps out the distribution of substation headroom for each LSOA recommended 
by the trials. 
 
Table 32 – List of the LSOAs most lacking in CPs, the number of CPs that could be immediately 
connected to existing substations (not taking into account physical space constraints), and the 
number required to satisfy current Uber EV demand 

 
Chargepoint 
LSOA 

Chargepoint 
LSOA 
Description 

Number of 
available 
substations 
in LSOA 

Headroom of 
max capacity 
available 
substation 
(median 
shown in 
brackets) 
(kVA)  

Maximum 
current 
Uber 
charging 
power 
usage 
(kVA) in 
half hour 
period 

50kW 
chargers that 
could be 
connected to 
substations 
in LSOA 
[Max (median)] 

Estimated 
new 
chargers 
required to 
meet current 
Uber demand 

City of 
London 
001F 

City of 
London 

268 2,089 (574) 7 41 (11) 3-6 

Hillingdon 
031A 

Heathrow 
Airport 

7 630 (228) 7 12 (4) 1-3 

Westminster 
011A 

Mayfair 19 637 (251) 0 12 (5) 3-6 

Barnet 012D Woodside 
Park 

6 724 (320) 0 14 (6) 1-2 

Bexley 016B Welling 5 727 (256) 200 10 (1) 1-2 

Croydon 
007E 

Norwood 
Junction 

2 118 (71) 0 2 (1) 1-2 

4.6.2.2 Peak in demand  

 
Averaged over all boroughs, the peak in electricity demand for Uber EV charging arrives at 
8pm, with a minor secondary peak existing in the early afternoon. Figure 51 shows the demand 
peaks per borough for the boroughs with the most charging events. This peak profile been 
observed to stay relatively constant throughout the year, although from June to August 2020 
this peak was shifted slightly earlier in the day, most likely owning to post-coronavirus 
conditions (reduced prominence of rush hours, reduction in office days and a stifling of nightlife 
could have contributed to this change).  
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Figure 51 – Maximum and average charge demand over the day for the boroughs with the most 
charging events (combination of on and off shift, February-April 2021) 

 

 
 

4.7 Insights gained 
 
The WS3 trials conducted using data from Uber trips throughout Greater London are now at 
an advanced stage and are delivering learnings that will help the project meet the trials’ 
objectives. 

 Addressing the experiment hypotheses 
 

Ub_Ex_01 Initial hypothesis: The time, location and magnitude of electric PHV 

charge events can be estimated from Uber trip data 

 

The trials have successfully developed a model of the charge events that would occur based 

on Uber data. A range of techniques have been used to identify when charge events could 

occur, and, based on several factors when drivers charged during the day. Where charging 
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during the shift was found to be unlikely, the charging was ascribed to an estimated home 

location. 

 

The magnitude of actual charge events was then modelled, based on drivers using the most 

optimal public CP for their journey. For both on-shift and off-shift charging the load on the 

network is likely to peak in the evening, as vehicle batteries become depleted and daytime 

drivers return home.  

 

Ub_Ex_02 Initial hypothesis: The time, location and magnitude of electric PHV 

charge events will be influenced by external factors such as weather and large public 

events 

 

Weather and time have so far been studied as potential influencers on charging patterns. 

 

It was found that weather has very little impact on EV trip volumes, and hence on the level of 

charging that is being modelled. It is possible however that weather affects the efficiency of 

vehicles – this impact cannot be estimated from the Uber trip data alone, and the telematics 

data from WS1 and WS2 will help in quantifying this effect. 

 

Time was found to have a greater influence than weather on trip and charging patterns. There 

are definite patterns in daily and day-to-day trip demand, and this has a knock-on effect on 

when drivers need to, and are able to, charge. 

 

Ub_Ex_04 Initial hypothesis: Locations lacking adequate charging infrastructure 

(current and future) can be inferred from Uber trip data 

 

The trials have mapped both where drivers actually charged (as in Ub_Ex_01) and where 

drivers were when they decided they needed to charge. Based on this the project was able to 

develop a range of indicators of the adequacy of charging infrastructure. There are several 

locations where drivers have to travel a significant distance in order to charge. 

 

LSOAs were ranked on the frequency and distance that drivers had to travel from them in 

order to charge. Central London areas in the City of London and City of Westminster ranked 

highly in both of these counts due to the low number of rapid CPs and the high volume of 

journeys undertaken. For off-shift charging, where long charge events will not impact on 

abilities of drivers to earn, drivers can more easily utilise the larger number of slow and fast 

CPs. 

 

Individual CPs were also studied and, based on the optimal CP modelling, the most popular 

CPs in London are utilised way beyond their capacity, suggesting drivers will have to queue 

in order to charge when they are at their busiest, or travel further in order to use non-optimal 

CPs. Again, CPs in and around the City of London and City of Westminster were identified as 

the locations with the highest modelled utilisation, so adding to the charging infrastructure 

there is recommended. CPs that were added in these areas, particularly in Westminster, 

during the project were very successful in accommodating Uber EV demand. 

 

The project team have now started work on modelling future demand growth, and the impacts 

this will have on infrastructure provision. 
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Ub_Ex_05 Initial hypothesis: electric PHV charging causes low magnitude, local 

stress on the distribution network at present, but will pose a more significant threat in 

the next 10 years 

 

Initial work on distribution network impact has involved overlaying the current charging 

demand in each LSOA on substation capacity, in order to develop heatmaps of areas where 

constraints may be encountered in the future. This initial analysis has shown that there is 

significant variation across the city, although Central London, where on-shift charging takes 

place is likely in a better position to accept additional demand than the suburban areas of the 

city where drivers live.  

 

Investigation will continue, utilising the models of future growth from Ub_Ex_04 and using the 

data collected in the trial as an input to UK Power Networks’ strategic forecasting tools to 

deliver a greater insight into network impacts. 

 Other learnings 
 
In addition to the learnings that directly address the trial hypotheses Optimise Prime has 
generated a number of learnings from the analysis of the WS3 data: 

• Availability of EVs and CPs continues to evolve: Throughout the period of the trials 

consistent growth has been seen in both the range of vehicles in the mixed trials and 

the availability of charging infrastructure. Both of these are likely to have a material 

impact on the trials and charging requirements, if this continues, and need to be 

factored into future growth and charging behaviour models.  

• Vehicle type appears to influence journey type: The vehicle type an Uber EV driver 

uses can influence the type of trips they conduct. EVs with low range were less likely 

to complete trips to airports, and high range vehicles were less likely to operate at 

weekends. 

 

4.8 Next steps 
WS3 is the most advanced of the three trial workstreams, having been subject to less of a 
delay in vehicle availability, as such to models for analysing the data in this workstream are 
well developed. Next steps in WS3 will involve continuing the analysis carried out to date and 
extending it with a particular focus on: 

• Forecasting the impact of future EV growth, based on projections of PHV electrification 
and analysing how Optimise Prime’s data on EVs can improve existing EV uptake 
models 

• Analysing the impact of future electric PHV demand on the distribution network, in 
terms of capacity and cost 

• Considering the potential for flexibility provision if the Optimise Prime flexibility and 
Profiled connection products can be applied to electric PHV charging. 
 

In Deliverable D5, the project will report on behavioural studies conducted with Uber drivers 
to gauge attitude to EV adoption. 
 

4.9 Changes made or planned from initial trial design 
The WS3 trials have generally proceeded to plan and it is not anticipated that changes will 
be made to the trial methodology.  
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5 Conclusions and Next Steps 
 

5.1 Conclusions 
This report forms the fourth Optimise Prime deliverable. The project has significantly 
progressed and this report provides a comprehensive summary of the activities that have 
taken place in the early stages of the trials and the learnings gained from this work. The 
experiments are continuing and the final results will be featured in future deliverables. 
 
This report should prove valuable to any DNO considering how to plan for the future growth of 
commercial EVs. The trial methodology may also prove useful to DNOs planning to implement 
similar innovation projects in the future. Vehicle fleet operators planning their transition to EVs 
should also find elements of this deliverable valuable, especially the lessons learnt regarding 
use of EVs. Charge Point Operators may find the projects findings around demand for 
charging useful to their businesses, and government organisations may find the findings useful 
as they plan for future EV infrastructure. 
 
Through the initial analysis of the available data, the Optimise Prime team has built several 
models in order to forecast future EV power demand from ICEV activity and has begun 
analysing EV data from the fleets in order to validate these models. Through the analysis of 
the Uber journeys, initial conclusions have been reached around the adequacy of current 
charging infrastructure and work has looked at comparing gaps in provision to network 
capacity. Future work will focus on modelling future growth of electric PHVs and the resulting 
requirements on charging infrastructure and the distribution network. 
 
As mentioned in previous deliverables, the design of the Optimise Prime trials build on 
learnings from several other Ofgem funded innovation projects and this deliverable report 
ensures future Innovation projects can build on the learning from Optimise Prime. 
 
Data capture, analysis and trialling activities will continue over the coming months in order to 
build on the insights presented in this report. Alongside the data science team, the project’s 
business modelling workstream is considering behavioural and economic aspects of the EV 
transition for fleets – the next deliverable, D5 will capture the initial insights from the trial 
activities. 
 
For further questions on the evidence provided in this report, or more general questions about 
the project, please contact Optimise Prime team at: communications@optimise-prime.com  or 
visit the project website www.optimise-prime.com.  
 

5.2 Next steps: Open items & future activities 
Following on from the initial findings the Optimise Prime trials will continue until the end of 
June 2022. Throughout this period the project team will focus on:  

• Running executions of all of the Optimise Prime trial experiments, including looking 
in greater detail on the future impacts of EVs on distribution networks, based on 
what the project is learning about EV use  

• Continuing to run a range of flexibility and profiled connection trials to prove the 

effectiveness of the project’s methods  

• Continuing to adapt the trials and experiments to increase value gained from the 

project based on the findings from the early trialling activity, 

• Continuing to collect a comprehensive dataset on EV use and charging behaviour 

mailto:communications@optimise-prime.com
http://www.optimise-prime.com/
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• Conducting further behavioural studies related to EV adoption, and economic 

analysis of the impact of electrification on fleet TCO, the first results of which will 

published in the next deliverable, D5 

• Utilising project data with UK Power Networks’ Strategic Forecasting System in 

order to quantify network impacts of EV adoption and the project methods 

• Continuing to engage with stakeholders through communications and events. 
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6 Appendices 
 

6.1 Rich view of the potential energy and power demands initiated by British Gas home charging  
Figure 52 – Potential energy and power demands of British Gas home charging at 3 selected LADs. Realpower [kW] on the left, Energy (kWh) on the 
right hand-side. 
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6.2 Smart charging programming logic  
 
The logic for peak load minimisation is as follows: 

• For each PTU, the headroom is determined by finding the difference between an 
initialised capacity constraint and the historical maximum background load for that PTU 

• For each PTU, vehicles are ranked based on how urgent it is for them to charge (i.e. 
the further away they are from a full state of charge, and the closer they are in time to 
being required to complete operations, the more urgent it is for them to charge) 

• Factors are then calculated to determine what portion of the headroom gets allocated 
to each vehicle for charging, and subsequently, the demand associated with charging 
each vehicle during each PTU is calculated 

• Until simulated vehicles have demonstrated that they’re managing to keep above a 
minimum state of charge that has been specified (e.g. 20%) throughout the week, the 
simulation is infeasible and the capacity constraint is increased and reinitialised. The 
20% figure has been chosen based on the assumption that drivers will not want to 
operate vehicles where the battery is close to empty. 

• Once a feasible simulation has been completed, the associated capacity constraint 
value is the minimised peak load value (assuming no LCTs at the site) 

• As for the unmanaged charging mode, vehicles are charged in batches, filling up 
according to the time they enter the depot, and batches thereafter prioritised according 
to the urgency rankings defined above. In the case where the number of CPs is less 
than the number of vehicles, this is an important consideration, especially since this 
base model assumes that when a batch has finished a new batch immediately starts at 
the next PTU. The business assumption in the simulation is that there is someone in 
the depot able to change over these vehicles at all times. 

 
The logic for cost minimisation is as follows: 

• Given that peak load minimisation has been simulated, the peak load value acts as a 
constraint in cost minimisation modelling 

• Linear programming logic is used to determine a charge schedule, such that, the energy 
bill associated with charging is minimised 

• For this to be valuable, the depot is modelled to have a time of use tariff 
 

The linear program is subject to various constraints, such as total load not being able to exceed 
the previously calculated minimised peak load and the minimum SoC always exceeding a 
user-specified threshold. 
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6.3 Example of Newham borough and the LSOAs contained within 
it, coloured by population density 

 
Figure 53 – LSOAs in the London Borough of Newham 
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6.4 Should Charge (S Value) Methodology 
 
Range Anxiety, based on an inferred SoC, was used to model whether drivers should charge. 
The model assumes vehicles start with at least 80% SoC, if following a trip their inferred SoC 
was low, the probability they should charge would be high; and if SoC was high, then the 
probability they should charge was low.  
 
To calculate shift demand, the trials assumed Uber drivers would seek to maximise their time 
on shifts, and so would not charge when the demand from passengers for an Uber trip in the 
local area was relatively high, with demand being defined as historical “en-route” that occurred 
in that area. If the demand for the area they were operating in at that moment was relatively 
high (for their shift) then the probability they should charge was low, with the converse proving 
to be true.  
 
The Trials would machine learn the weighting of these two functions. The resulting S values 
were borough independent: 
 
Figure 54 – Examples of S-values 

 

 
 
 

6.5 Did Charge (D Value) Methodology 
 
Having confirmed that it was physically possible to charge using a CP in an available time on 
an open/offline event chain, the trials would then determine if the driver did go to charge based 
on the following properties: the inferred S value, and the SoC increase from the optimal CP.  
 
A charge event could be confirmed if the D value (formed by evaluation of the previous two 
properties) was greater than 50%.  

 The inferred S (should) value 
Given it was possible for a driver to charge, a probability that they did charge would then be 
decided according to the inferred should value. If this was higher, then it was deemed more 
likely they actually did go to charge. Essentially, the probability a driver did go to charge 
increased proportional to the fact that they should go to charge, given that they could have 
gone to charge. 
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 SoC increase from optimal CP 
A driver is more likely to go and charge if they would receive more charge from the optimal 
CP. However, this would only be true to a certain extent, since drivers also have to complete 
trips and so their sole focus is not boosting the charge of their vehicle. Consequently, the trials 
decreased the probability that they did charge if the SoC gained from a CP was “too high” 
(approaching a full/complete charge) to reflect this.   
 

6.6 The logic for assigning each Uber driver a ‘home’ location 
 
Figure 55 – Uber home location assignment logic 
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6.7 Off-street parking levels, TFL Data  
(source: http://content.tfl.gov.uk/travel-in-london-report-12.pdf) 
 
Table 33 – On/Off street parking numbers by London borough 

 

 
 
 
  

http://content.tfl.gov.uk/travel-in-london-report-12.pdf
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6.8 Off-street parking availability, example of data from Field Dynamics  
 
(borough level summary can be viewed at https://onstreetcharging.acceleratedinsightplatform.com/) 
 
Figure 56 – Example of off-street parking data 

 

 

https://onstreetcharging.acceleratedinsightplatform.com/
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6.9 Distribution of substation headroom for each LSOA additional charging infrastructure was 
recommended for 

 
Figure 57 – Distribution substation headroom in selected boroughs 
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6.10 LSOAs where drivers most frequently had to drive elsewhere 
and where they had to drive the furthest for on-shift charging, 
November 2020-January 2021 

 
Table 34 – The LSOAs where drivers most frequently had to travel to other LSOAs to charge 

 

Start LSOA LSOA Description Number of charge 
events originating 
in LSOA 

Average distance 
travelled to 
chargepoint (km) 

Hillingdon 031A Heathrow Airport 316 8.72 

City of London 
001F 

City of London 296 4.50 

Westminster 018D Mayfair 284 4.70 

Westminster 011A Marylebone 242 5.08 

Westminster 011B Bond Street 228 4.61 

Westminster 013E 
North of Piccadilly 
Circus 

183 4.73 

Westminster 018C 
Pall Mall / North of 
St James Park 

175 4.56 

Westminster 019C 
Knightsbridge/ Park 
Lane  

175 4.13 

Westminster 011E 
Marble Arch / Bond 
Street 

158 4.64 

Lambeth 036A 
Royal National 
Theatre / Southbank 
Centre 

141 4.03 

 
Table 35 – The LSOAs from which drivers had to drive the furthest in order to charge 

 

Start LSOA LSOA Description Number of charge 
events originating 
in LSOA 

Average distance 
travelled to 
chargepoint (km) 

Hillingdon 031A Heathrow Airport 316 8.72 

Hounslow 005D 
Airlinks Golf and 
Country Club 

65 6.03 

Ealing 015E North Acton 81 5.37 

Westminster 011A Marylebone 242 5.08 

Westminster 013D Fitzrovia 132 4.93 

Westminster 013E 
North of Piccadilly 
Circus 

183 4.73 

Westminster 008D Baker Street 63 4.73 

Westminster 011C Marylebone 116 4.71 

Westminster 018D Mayfair 284 4.70 

Westminster 023E Victoria station 97 4.65 
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